اثر تیمارهای پس از برداشت فنیل‌آلانین و سولفید هیدروژن بر حفظ کیفیت و افزایش عمر انبارمانی میوه بادنجان (Solanum melongena L.)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 به‌ترتیب دانش‌آموخته کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

به­منظور بررسی اثر تیمارهای فنیل­آلانین و سولفید هیدروژن بر عمر انبارمانی و کیفیت میوه بادنجان آزمایشی به­صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. فاکتورهای آزمایش شامل تیمارهای فنیل­آلانین در سه غلظت (5/2، 5 و 5/7 میلی­مولار)، سولفید هیدروژن در سه غلظت (1، 2 و 3 میلی­مولار) و شاهد (تیمار آب مقطر) و  فاکتور دوم طول دوره انبارمانی (7، 14 و 21 روز) بود. میوه­ها پس از تیمار به­مدت 7، 14 و 21 روز در دمای هفت درجه سانتی­گراد و رطوبت نسبی 90- 85 درصد نگهداری شدند. نتایج نشان داد که در میوه­های شاهد بعد از 21 روز انبارمانی، محتوای کلروفیل کل کاسبرگ (8/45 درصد)، ویتامین ث (1/34 درصد)، اسیدیته قابل تیتراسیون (8/44 درصد)، آنتوسیانین (2/66 درصد) و سفتی بافت میوه (2/24 درصد) کاهش، و کاهش وزن میوه (5/7 درصد)، مواد جامد محلول کل (3/8 درصد) و شاخص سرمازدگی (3/4 درصد) افزایش یافت. نتایج نشان داد که کاربرد پس از برداشت سولفید هیدروژن و فنیل­آلانین تاثیر معنی­داری بر حفظ کیفیت و عمر انبارمانی میوه داشتند. در پایان دوره انبارمانی بیشترین سفتی بافت میوه (37/1 و 34/1 کیلوگرم بر سانتی­متر مربع)، آنتوسیانین (02/5 و 2/4 میلی­گرم در لیتر) و اسید قابل تیتراسیون (66/15 و 67/18 درصد) و کمترین درصد کاهش وزن میوه (67/3 و 7/3) و شاخص سرمازدگی (6/1 و 3/1 درصد) به ترتیب در میوه­های تیمار شده با سولفید هیدروژن 3 میلی­مولار و فنیل­آلانین 5/7 میلی­مولار بدست آمد. با توجه به نتایج، تیمار پس از برداشت فنیل­آلانین و سولفید هیدروژن می­تواند جهت بهبود خواص کیفی و عمر ماندگاری میوه بادنجان، در طول دوره انبارمانی پیشنهاد گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Postharvest Treatments of Phenylalanine and Hydrogen Sulfide on Maintaining Quality and Enhancing Shelf life of Eggplant (Solanum melongena L.)

نویسندگان [English]

  • R. Najafi 1
  • Taher Barzegar 2
  • F. Razavi 3
  • Z. Ghahremani 3
1 Graduated M.Sc., Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Associate Professor Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Assistant Professor, Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Introduction: Eggplant (Solanum melongena L.) is an important non-climacteric fruit grown in tropical and subtropical regions. The total production in Iran and world for eggplants in 2018 were estimated 54077210 and 666838 tons, respectively, and Iran ranked fifth in the production of this product. The health-promoting attributes of eggplant are derived from the phytochemicals with good source of antioxidants (anthocyanin and phenolic acids), dietary fiber and vitamins. Fruit deterioration during long term storage is associated with appearance quality reduction, calyx discoloration, softening and pulp browning caused by the oxidation of phenolic compounds. Hydrogen Sulfide (H2S) is a flammable and colorless gas, that similar to carbon monoxide and nitric oxide, is known as third leading signaling molecule. It has been reported that H2S play an imperative role in the postharvest physiology and chilling injury of various fruits and vegetables. In recent years, exogenous phenylalanine (PA) application has been employed as a beneficial procedure for enhancing quality in fruits and vegetables by promoting higher phenols and flavonoids accumulation arising from higher PAL enzyme activity and proline accumulation exhibiting higher ROS scavenging capacity. Thus, the aim of this study was to investigate the postharvest application of H2S and PA on quality and postharvest storage of eggplant fruit during storage at 7 °C for 21 days.
Material and Methods: Eggplant fruits (Solanum melongena cv. Hadrian) were harvested at commercially maturity stage in Jun 2019 from a greenhouse in Hashtgerd city, Iran. Fruit selected for uniform size, shape, and color, and immediately transported to the laboratory. They were divided into seven parts for the following treatments: control (0), hydrogen Sulfide (H2S) at 0.1, 0.2 or 0.3 mM and phenylalanine (PA) at 2.5, 5 or 7.5 mM. Each treatment was done in three replicates, consists of 24 fruits from each replicate, and then randomly divided into four groups include six fruits. One group was analyzed 24 hrs. after harvesting and another groups stored at 7 ± 1 °C and 85% RH for 21 days. At 7-day intervals, one group was taken at random and transferred for one day at 20 °C (shelf-life), and subjected to physicochemical analysis. For H2S fumigation, fruit was placed at the bottom of a sealed 15 L container with different aqueous sodium hydrosulfide (NaHS) solution concentrations for 10 min, and for PA treatments, the fruits were immersed in 10 L of fresh phenylalanine solution for 10 min and in distilled water as a control. The fruits were allowed to completely dry at room temperature before storage.
Results and Discussion: The results showed that fruits treated by PA and H2S exhibited higher fruit firmness, chlorophyll, anthocyanin, total soluble solids (TSS), vitamin C, pH and titratable acidity (TA) accompanied by lower weight loss and chilling indices during storage at 7 ºC for 21 days. In control eggplant fruits, fruit firmness (24.2%), chlorophyll (45.8%), vitamin C (34.1 %), anthocyanin content (66.2 %) and TA (44.8) decreased, and weight loss (7.5 %), TSS (8.2%) and chilling indices (4.5 %) increased during 21 storage time. The maximum fruit firmness (1.37 and 1.34 kg cm-2), anthocyanin content (5.02 and 4.2 mg L-1) and TA (18.67 and 1.37 %), and the lowest weight loss (3.67 and 3.7 %) and chilling index (1.6 and 1.3 %) was found in fruits treated with H2S at 3 mM and PA at 7.5 mM during storage at 7 °C for 21 days, respectively. It has been reported that texture correlates with firmness and higher firmness is a characteristic indicator of good texture during postharvest storage of fresh products. Soluble solid contents, titratable acidity (TA) and sugars have been known as important attributes contributing in overall sensory quality of fruits and vegetables. Development of the chilling injury disorder significantly reduces quality of fruits and vegetables due to diminished consumer’s acceptance. So, start of chilling injury symptoms eventually becomes economically critical postharvest constraint that defines the storage life potential of the products. Decline chilling injury in responses to H2S and PA treatments may resulted from higher ROS scavenging enzymes SOD, CAT, APX and POD activity and proline, phenols and flavonoids accumulation giving rise to conferring chilling tolerance.
Conclusion: According to results, PA at 7.5 mM and H2S at 3 mM had the highest positive effect on maintain firmness and fruit quality and reducing weight loss and chilling, therefor postharvest treatment of PA and H2S can be proposed to improve fruit quality and postharvest life during storage period.

کلیدواژه‌ها [English]

  • Anthocyanin
  • Chilling
  • Firmness
  • vitamin C
  • Weight loss
1-       Aghdam M.S., and Bodbodak S. 2013. Physiological and biochemical mechanisms regulating chilling tolerance in fruit and vegetables under postharvest salicylates and jasmonates treatments. Scientia Horticulturae 156: 73–85.
2-       Aghdam M.S., Mahmoudi R., Razavi F., Rabiei V., and Soleimani A. 2018. Hydrogen sulfide treatment confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation. Scientia Horticulturae 238: 264–271.
3-       Aghdam M., Moradi M., Razavi F., and Rabiei V. 2019. Exogenous phenylalanine application promotes chilling tolerance in tomato fruits during cold storage by ensuring supply of NADPH for activation of ROS scavenging systems. Scientia Horticulturae 246: 818-825.
4-       Al Ubeed H.M.S., Wills R.B.H., Bowyer M.C., Vuong Q.V., and Golding J.B. 2017. Interaction of exogenous hydrogen sulfide and ethylene on senescence of green leafy vegetables. Postharvest Biology and Technology 133: 81-87.
5-       Ali S., Nawaz A., Ejaz S., S. Haider T.A., Alam M.W., and Javed H.U. 2019. Effects of hydrogen sulfide on postharvest physiology of fruits and vegetables: An overview. Scientia Horticulturae 243: 290-299.
6-       Ali, S., Khan A.S., Malik A.U., Shaheen T., and Shahid M. 2018. Pre-storage methionine treatment inhibits postharvest enzymatic browning of cold stored ‘Gola’ litchi fruit. Postharvest Biology and Technology 140: 100–106.
7-       Arnon A. N. 1967. Method of extraction of chlorophyll in the plants. Agronnmy Journal 23(1): 112-121.
8-       Barzegar T., Fateh M., and Razavi F. 2018. Enhancement of postharvest sensory quality and antioxidant capacity of sweet pepper fruits by foliar applying calcium lactate and ascorbic acid. Scientia Horticulturae 241, 293-303.
9-       Buyukbay E.O., Uzunoz M., and Bal H.S.G. 2011. Post-harvest losses in tomato and fresh bean production in Tokat province of Turkey. Scientific Research and Essays 6(7): 1656-1666.
10-   Christou A., Manganaris G.A., Papadopoulos I., and Fotopoulos V. 2013. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. Journal of Experimental Botany 64(7): 1953-1966.
11-   Concellón A., Zaroa M.J., Chaves A.R., and Vicente A.R. 2012. Changes in quality and phenolic antioxidants in dark purple American eggplant (Solanum melongena L. cv. lucía) as affected by storage at 0 ºC and 10 ºC. Postharvest Biology and Technology66: 35-41.
12-   Ding C.K., Wang C., Gross K.C., and Smith D.L. 2002. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214(6): 895-901.
13-   Edahiro J., Nakamura M., Seki M., and Furusaki S. 2005. Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of L-phenylalanine into the medium. Journal of Bioscience and Bioengineering. 99: 43–47.
14-   FAO. 2018. FAOSTAT, FAO Statiscal Databases http://faostat.fao.org.
15-   Gajewski M., Katarzyna K., and Bajer M. 2009. The influence of postharvest storage on quality characteristics of fruit of eggplant cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(2): 200-205.
16-   Gao S.P., Hu K. D., Hu L.Y., Li Y.H., Han Y., Wang H.L., Ly K., Liu Y.S., and Zhang H. 2013. Hydrogen sulfide delays postharvest senescence and plays an antioxidative role in fresh-cut kiwifruit. HortScience 48(11): 1385-1392.
17-  Getenit H., Seyoum T., and Woldetsdik K. 2008. The effect of cultivar, maturity stage and storage environment on quality of tomatoes. Journal of Food Engineering 87: 467-498.
18-  Giusti M. M., and Wrolstad R. E. 2001. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols 1: 1-2.
19-   Hernandez-Munoz P., Almenar E., Del Valle V., Velez D., and Gavara R. 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage. Food Chemistery 110(2): 428-435.
20-   Horbowicz M., Kosson R., Grzesiuk A., and Dębski H. 2008. Anthocyanin’s of fruits and vegetables their occurrence, analysis and role in human nutrition. Vegetable Crops Research Bulletin 68: 5-22.
21-   Hu L.Y., Hu S.L., Wu J., Li Y.H., Zheng J.L., Wei Z.J., Liu J., Wang H. L., Liu Y.S., and Zhang H. 2012. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. Journal of Agricultural and Food Chemistry 60(35): 8684-8693.
22-   Hu H., Liu D., Li P., and Shen W. 2015. Hydrogen sulfide delays leaf yellowing of stored water spinach (Ipomoea aquatica) during dark-induced senescence by delaying chlorophyll breakdown, maintaining energy status and increasing antioxidative capacity. Postharvest Biology and Technology 108: 8-20.
23-   Hu H., Shen W., and Li P. 2014. Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit. International Journal of Food Science Technology 49(2): 399-409.
24-   Jalili Marandi R. 2013. Postharvest physiology (Handling and storage of fruits, vegetables and ornamental plants) (2th ed.). Publishers Jihad Urmia University. 624 pp. (In Persian)
25-   Keshavarz, F. 2018. Effect of postharvest phenylalanine and hydrogen sulfide treatments on biochemical and antioxidant properties of pomegranate fruit cultivar Malas Saveh during cold storage. M.Sc. Thesis. Faculty of Agriculture, University of Zanjan, Iran. (In Persian)
26-   Li S.P., Hu K.D., Hu L.Y., Li Y.H., Jiang A.M., Xiao F., Han Y., Liu Y.S., and Zhang H. 2014. Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescence-related gene expression. Journal of Agricultural and Food Chemistry 62(5): 1119-1129.
27-   Luo Z. 2006. Extending shelf-life of persimmon (Diospyros kaki L.) fruit by hot air treatment. European Food Research and Technology 222(1-2): 149-154.
28-   Luo Z.D., Li R.D., and Mou W. 2015. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae 183: 144-151.
29-   Massolo J.F., Concellón A., Chaves A.R., and Vicente A.R. 2011. Methylcyclopropene (1-MCP) delays senescence, maintains quality and reduces browning of non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biology and Technolology 59(1): 10-15.
30-   Mostofi Y., Dehestani Ardekani M., and Razavi H. 2011. The effect of chitosan on postharvest life extension and qualitative characteristics of table grape “Shahroodi”. Journal of Food Science 8(30), 93-102. (In Persian)
31-   Portu J., López-Alfaro I., Gómez-Alonso S., López R., and Garde-Cerdán T. 2015. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chemistery 180:171-180.
32-   San José R., Plazas M., Sánchez-Mata M.C., Cámara M., and Prohens J. 2016. Diversity in composition of scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants and of interspecific hybrids between S. aethiopicum and common eggplant (S. melongena). Journal of Food Composition and Analysis 45: 130-140.
33-   Shi J., Zuo J., Zhou F., Gao L., Wang Q., and Jiang A. 2018. Low-temperature conditioning enhances chilling tolerance and reduces damage in cold-stored eggplant (Solanum melongena L.) fruit. Postharvest Biology and Technology 141: 33–38.
34-   Suekawa M., Fujikawa Y., Inoue A., Kondo T., Uchida E., Koizumi T., and Esaka, M. 2019. High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruits. Bioscience, Biotechnology, and Biochemistry 1-4.
35-   Sun Y., Zhang W., Zeng T., Nie Q.X., Zhang F. Y., and Zhu L.Q. 2015. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Food Chemistery 177: 376–381.
36-   Treviño Garza M. Z., García S., Del Socorro Flores González M., and Arévalo Niño K. 2015. Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). Journal of Food Sciences 80(8): 1823-1830.
37-   Tzin V., and Galili G. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant. 3(6): 956-972.
38-   Zheng J.L., Lan-Ying Hu L.Y., and Hu K.D. 2016. Hydrogen sulfide alleviates senescence of fresh-cut apple by regulating antioxidant defense system and senescence-related gene expression. HortScience 51(2): 152–158.