بهبود تحمل به کم‌آبی با استفاده از کمپوست پسماند شهری در چمن بومی تال فسکیو

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

چکیده

تحقیق حاضر، با هدف بررسی اثر نسبت­های اختلاط کمپوست زباله شهری با خاک بر برخی خصوصیات فیزیولوژیکی چمن گونه بومی تال فسکیو (Festucaarundinaceous) در پاسخ به تنش خشکی در قالب دو آزمایش در گلخانه تحقیقاتی دانشگاه فردوسی مشهد انجام گردید. در آزمایش اول، بررسی درصد و سرعت سبز شدن چمن در قالب طرح کاملاً تصادفی با چهار تکرار صورت پذیرفت که در آن تیمارهای آزمایش شامل ده مقدار مختلف اختلاط کمپوست با خاک (10 تا 100 تن در هکتار) و تیمار شاهد (خاک زراعی بدون اختلاط با کمپوست) بود. در آزمایش دوم، سه مقدار برتر کمپوست از آزمایش اول به همراه شاهد بعنوان فاکتور اول و سه سطح تنش رطوبتی 25، 50 و 100 درصد ظرفیت زراعی به ترتیب بعنوان تنش­های شدید و ملایم و عدم تنش، بعنوان فاکتور دوم در نظر گرفته شدند که بصورت فاکتوریل و در قالب طرح کاملاً تصادفی در چهار تکرار مورد مقایسه قرار گرفتند. نتایج آزمایش اول نشان داد که مقادیر 70، 80 و 90 تن درهکتار بواسطه داشتن ظرفیت نگهداری آب بالاتر، سبب افزایش معنی­دار درصد و سرعت سبز شدن چمن شدند. در آزمایش دوم، با افزایش شدت تنش خشکی در مقادیر مختلف کمپوست، میزان کلروفیل کل کاهش و صفات محتوی نسبی آب گیاه، پرولین و نشت الکترولیت­ها افزایش پیدا کردند. در تیمار کمپوست 90 تن درهکتار به دلیل توانایی بالای آن در ذخیره آب، انسجام غشاءهای سلولی بیشتر حفظ شد و درک کمتری از تنش صورت گرفت. وزن خشک اندام هوایی نیز تحت تاثیر افزایش شدت تنش خشکی بطور معنی‌داری کاهش یافت. در مجموع به نظر می­رسد که کاربرد 90 تن کمپوست در هکتار بطور معنی­داری در بهبود تحمل به خشکی چمن تال فسکیو موثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Improving Drought Stress Tolerance using Municipal Solid Waste (MSW) Compost in Native Grass – (Festuca arundinacea)

نویسندگان [English]

  • M. Sadat Farizani 1
  • H.R. Khazaee 1
  • Gh.A. Gazanchian 2
1 Department of Agriculture, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Agricultural Research and Training Center and Natural Resources of Khorasan Razavi Province, Agricultural Research, Education and Extension Organization, Mashhad, Iran
چکیده [English]

Introduction: Beautification of urban space and creating attractive face for cities by development of green space has caused to capita of urban green space be introduced as an important factor in urban development. Meanwhile, the important role of cover plants, especially turf grass, in creating green spaces has caused to add quickly the area of these beautiful plants in the cities. Nevertheless, existence of plants with high water requirements between the turf grasses, have created limitations in terms of water requirements supply. The grass planted in the country is mainly from imported seed types that are not so compatible with dry and semi-arid conditions in our country and from this point of view, sometimes they create limitations in terms of water supply. One of the native grasses in the country, is Tall Fescue (Festuca arundinaceous), which is a variety of cool-season, perennial and herbaceous grasses. One of the strategies to preserve grass under drought stress is improving soil structure with the aim of increasing the moisture. Organic compounds that improve soil physical and biological conditions (such as municipal waste compost and manure) can be effective. Using compost improves soil structure and strengthens soil mineral content and allows soil to retain moisture for longer. Because compost can hold water about two to six times its volume and prevent it from being wasted. Compost in heavy soils, improves soil porosity and makes the soil better ventilation elderly. In light soils, it acts like a sponge and by keeping water and food safe, it will greatly prevent them from being washed. Therefore, present research was done to evaluate the effect of mixing different amounts of Municipal Solid Waste (MSW) compost with soil on some physiological properties of Tall Fescue native grass under moisture stress conditions.
Materials and Methods: This research was conducted in the form of two experiments in research greenhouse of Ferdowsi University of Mashhad. The first experiment with aim of evaluating percentage and rate of grass emergence was conducted in a completely randomized design with four replications that the experimental treatments consisted of ten different levels of compost mixing with soil (10 up to 100 t.ha-1) and control treatment (agronomic soil without mixing compost). In the second experiment, three values of 70, 80 and 90 tons of compost per hectare plus control (no compost consumption) as the first factor and three levels of moisture stress of 25, 50 and 100 percent of field capacity as intense stress, mild stress and without stress, respectively as the second factor that were compared in factorial by a completely randomized design with four replications.
Results and Discussion: The results of the first experiment showed that the amounts of 70, 80 and 90 tons per hectare increased significantly the percentage and rate of grass emergence due to increased fertility and higher water holding capacity and in these treatments, the positive effect of rising water holding capacity has been dominated on negative effect of electrical conductivity of the soil and this topic has led to an improvement in the percentage of grass emergence in these treatments. Furthermore, in the amounts of 70, 80 and 90 tons of compost per hectare, the bulk density of soil significantly decreased and the C/N ratio dramatically increased. In the second experiment, with increasing drought stress in different amounts of compost, the total chlorophyll content decreased and relative water content of plant, proline and electrolyte leakage increased. In the compost treatment of 90 tons per hectare, due to its high ability to store water, the cell membrane integrity was more preserved and it was done less understanding of stress. The shoot dry weight decreased significantly as a result of increasing the severity of drought stress.
Conclusion: Based on the findings of this study, application of 90 tons of compost per hectare significantly improved some of physiological traits for Tall Fescue grass in drought stress conditions. Also, it seems that Tall Fescue grass cleverly has tried to deal with drought stress with target of increase the amount of moisture available for itself. Therefore, using 90 tons of compost per hectare for Tall Fescue grass in low water conditions and occurrence of moisture stresses is recommended.

کلیدواژه‌ها [English]

  • Chlorophyll
  • drought
  • Electrolyte leakage
  • Grass
1-       Agassi M., Levy G.J., Hadas A., Benyamini Y., Zhevelev H., Fizik E., Gotessman M., and Sasson N. 2004. Mulching with composted municipal solid wastes in Central Negev, Israel. Effects on minimizing rainwater losses and on hazards to the environment. Soil and Tillage Research 78: 103- 113.
2-       Alguacil M., Caravaca F., Díaz-Vivancos P., Hernández J.A., and Roldán A. 2006. Effect of Arbuscular Mycorrhizae and Induced Drought Stress on Antioxidant Enzyme and Nitrate Reductase Activities in Juniperus oxycedrus L. Grown in a Composted Sewage Sludge-amended Semi-Arid Soil. Plant and Soil 279: 209.
3-       Al-Shammary A.A.G., Kouzani A.Z., Kaynak A., Khoo S.Y., Norton M., and Gates W. 2018. Soil Bulk Density Estimation Methods: A Review. Pedosphere 28(4): 581-596.
4-      Arshadi J., and Asgharipour M.R. 2011. The Effects of Seed Size on Germination and Early Seedling Growth of Pelleted Seeds of Sugar Beet. Journal of Applied Sciences Research 7(8): 1257-1260.
5-       Bajji M., Lutts S., and Kinet J.M. 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science 160: 669–681.
6-       Bates I.S., Waldern R.P., and Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205-207.
7-       Bayoumi T.Y., Eid M., and Metwali E.M. 2008. Application of physiological and Biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology 7: 2341-2352.
8-       Casado-Vela J., Sellés S., Navarro J., Bustamante M.A., Mataix J., Guerrero C., and Gomez I. 2006. Evaluation of composted sewage sludge as nutritional source for horticultural soils. Waste Management 26(9): 946-952.
9-       Foley B.J., and Cooperband L.R. 2002. Paper mill residuals and compost effects on soil carbon and physical properties. Journal of Environmental Quality 31(6): 2086-2095.
10-   Garg N., and Singla R. 2009. Variability in the response of chickpea cultivars to short-term salinity, in terms of water retention capacity, membrane permeability and osmo-protection. Turk J. Agric., 33: 1-7.
11-   Gazanchian A., Hajheidari M., Khoshkholgh Sima N., and Hosseini Salekdeh G. 2007. Proteome response of Elymus elongatum to severe water stress and recovery. Journal of Experimental Botany 58(2): 291–300.
12-   Gazanchian A., Sima K.K., Nayer A., Malboobi M.A., and Majidi Heravan E. 2006. Relationships between emergence and soil water content for perennial cool-season grasses native to Iran. Crop Science 46(2): 544-553.
13-   Ghassemi-Golezani K., Aliloo A.A., Valizadeh M., and Moghaddam M. 2008. Effects of different priming techniques on seed invigoration and seedling establishment of lentil (Lens culinaris Medik). Journal of Food, Agriculture and Environment 6(2): 222-226.
14-    Hargreaves J.C., Adl M.S., and Warman P.R. 2008. A review of the use of composted municipal solid waste in agriculture. Journal of Agriculture Ecosystem and Environment 123: 1-14.
15-    Heuer B. 1994. Osmo regulatory role of proline in water stress and salt-stressed plants: 363-381. In: Pessarakli. M., (Ed.). Handbook of Plant and Crop Stress. Marcel Dekker Publisher. New York. P. 697.
16-   Hoyle J., Keeley S., and Fagerness M. 2015. Tall Fescue Lawns. Kansas State University Agricultural Experiment Station and Cooperative Extension Service.
17-   Huang B., Fry J.D., and Wang B. 1998. Water relations and canopy characteristics of tall fescue cultivars during and after drought stress. HortScience 33: 837-840.
18-   Lee J.J., Park R.D., Kim Y.W., Shim J.H., Chae D.H., Rim Y.S., and Kim K.Y. 2004. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bio resourceTechnology 93(1): 21-28.
19-   Lichtenthaler H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic bio membranes. Methods in Enzymol 148: 350-382.
20-   Morris B., and Kopec D. 2010. Maintaining Tall Fescue Turf grass in Urban Mojave Desert Landscapes. University of Nevada Cooperative Extension.
21-   Movahedi Dehnavi M., Ranjbar M., Yadavi A.R., and Kavoosi B. 2010. The effect of cyclocel on proline, soluble sugars, protein, oil content and fatty acids of flaxseed oil (Linum ussitatissimum) under drought stress conditions in pot cultivation. Journal of Environmental Stress in Crop Sciences 3(2): 129-138. (In Persian with English abstract)
22-   Nikolaeva M.K., Maevskaya S.N., Shugaev A.G., and Bukhov N.G. 2010. Effect of Drought on Chlorophyll Content and Antioxidant Enzyme Activities in Leaves of Three Wheat Cultivars Varying in Productivity. Russian Journal of Plant Physiology,57(1): 87–95.
23-   Pradhan G.P., Vara Prasad P.V., Fritz A.K., and Kirkham M.B. 2012. Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology 39: 190-198.
24-   Ritchie S.W. and Nguyen H.T. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science 30: 105-111.
25-   Sadat Farizani M., Khazaie H.R., and Gazanchian G.A. 2019.Evaluating the effect of mixing different amounts of municipal solidwaste (MSW) compost with soil on root properties of tall fescue (Festuca arundinaceae Schreb.) under moisture stress conditions. Journal of Horticultural Science 33(1): 155-167. (In Persian with English abstract)
26-   Saha M.C., Rouf Mian M.A., Eujayl I., Zwonitzer J.C., Wang L., and May G.D. 2004. Tall Fescue EST-SSR markers with transferability across several grass species. Theoretical and Applied Genetics 109(4): 783-791.
27-   Sakr W.R.A. 2009. Response of paspalum turf grass grown in sandy soil to trinexapac-ethyl and irrigation water salinity. Journal of Horticultural Science and Ornamental Plants 1: 15-26.
28-   Shiri J., Keshavarzi A., Kisi O., Karimi S., and Iturraran-Viveros U. 2017. Modeling soil bulk density through a complete data scanning procedure: Heuristic alternatives. Journal of Hydrology 259: 592-602.
29-   Taiz L., and Zeiger E. 2006. Plant Physiology. Sinauer Associates. Inc. Publishers.
30-   Waltz C., and Landry G. 2006. Seeding Tall Fescue Lawns. Georgia Center for Urban Agriculture.
31-   Wanchez-monedaro M.A., Roig A., Paredes C., and Bernal M.P. 2001. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of composting mixtures. Bioresource Technology, 78: 301- 308.
32-   Waqas M., Ahmad B., Arif M., Munsif F., Khan A.L., Amin M., Kang S.M., Kim Y.H., and Lee I.J. 2014. Evaluation of humic acid application methods for yield and yield components of mungbean. American Journal of Plant Sciences 5: 2269-2276.