بررسی برهم کنش ویروس پژمردگی لکه‌ای گوجه‌فرنگی (Tomato spotted wilt virus) و آهن روی برخی خصوصیات فیزیولوژیکی گوجه‌فرنگی در شرایط گلخانه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه گیاه پزشکی-دانشکده کشاورزی-دانشگاه بیرجند

2 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بیرجند

3 عضو هیات علمی/دانشگاه بیرجند

چکیده

ویروس پژمردگی لکه­ای گوجه­فرنگی (Tomato spotted wilt virus) متعلق به جنس توسپوویروس  (Tospovirus)و خانواده بنیاویریده (Bunyaviridae) می­باشد. این ویروس خسارت زیادی به کشت­های گوجه­فرنگی و انواع گیاهان در گلخانه­های کشور وارد نموده است. همواره به جهت افزایش مقاومت گیاهان و کنترل آلودگی­های ویروسی از تغذیه کودی گیاهان استفاده می­شود. یکی از عناصر مورد نیاز گیاه عنصر آهن می­باشد که در روند تحمل گیاه به انواع تنش­ها اثر زیادی دارد. بنابراین، به منظور بررسی اثرات متقابل ویروس پژمردگی لکه­ای گوجه­فرنگی و عنصر آهن بر برخی خصوصیات بیوشیمیایی دو رقم گوجه­فرنگی ، تحقیقی در قالب طرح کاملاً تصادفی با سه تکرار و چهار تیمار در دانشکده کشاورزی دانشگاه بیرجند اجرا شد. فاکتورهای آزمایش شامل رقم با دو سطح (رقم ’موبیل‘ و رقم ’ریوگراند‘) و محلول­پاشی آهن در حضور آلودگی ویروسی با سه غلظت (صفر، 5/1 و 3 میلی­لیتر کود آهن مایع در یک لیتر آب) اعمال شد. صفات بیوشیمیایی مورد بررسی در این آزمایش شامل قندکل، فنل، فلاونوئید، آنتی‌اکسیدان و  کلروفیل (a،  bو کلروفیل کل) بودند. نتایج این تحقیق نشان داد کاربرد برگی کود آهن در غلظت 5/1میلی­لیتر منجر به افزایش محتوی قند کل در گیاهان آلوده شد. همچنین نتایج مقایسه میانگین­ها حاکی از آن است که بیشترین میزان آنزیم­های آنتی­اکسیدان در گیاهان آلوده به ویروس با 34/73 درصد مشاهده شد. در بین ارقام از نظر میزان فنل و فلاونوئید تفاوت معنی­داری در سطح احتمال یک درصد وجود داشت به نحوی که بیشترین میزان فنل در رقم ’موبیل‘ با 68/0میلی­گرم در صد گرم و بیشترین میزان فلاونوئید در رقم ’ریوگراند‘ با 51/0 میلی­گرم در گرم وزن تازه مشاهده شد. در مجموع کود آهن با غلظت 5/1 میلی­لیتر باعث بهبود قندکل در گیاهان آلوده به ویروس پژمردگی لکه­ای گوجه­فرنگی شد و همراه با فنل و آنزیم­های آنتی­اکسیدان بر کاهش گسترش ویروس به ویژه در رقم ’موبیل‘ تاثیر مثبتی گذاشت و منجر به کاهش شدت علائم شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Tomato Spotted Wilt Virus and Fe Interaction on some Physiological Characteristics of Tomato in Greenhouse Conditions

نویسندگان [English]

  • Nilofar Haresabadi 1
  • S.A. Hosseini 2
  • M.H. Aminifard 3
1 Department of Plant Protection and Horticulture, Faculty of Agriculture, University of Birjand
2 Department of Plant Protection, Faculty of Agriculture, University of Birjand
3 Associate Professor/University of Birjand
چکیده [English]

Introduction
 Tomato, scientifically known as Solanum lycopersicum L., belongs to the Solanaceae family and is susceptible to various diseases, resulting in reduced yield. Among the diseases, the Tomato spotted wilt virus (TSWV), which belongs to the Tospovirus genus and Bunyaviridae family, causes significant damage to tomato crops and other greenhouse plants. Therefore, it is crucial to find ways to increase plant resistance and control viral infections. One effective method is through proper plant nutrition, which can enhance plant resistance by balancing fertilizer consumption and nutrient supply. Iron (Fe) is an essential element for plants and plays a significant role in increasing their tolerance to various stresses. In Order to evaluate the interaction effects of Tomato spotted wilt virus and Fe on some biochemical traits of Mobil and RioGrand tomato cultivars, a study was conducted in Birjand Faculty of Agriculture.
Materials and Methods
 Experiment in a Random complete design with greenhouse conditions, with 3 replications and 4 treatments Done. Experimental factors include cultivar with two levels (Mobil cultivar and Rio Grand cultivar) and Fe foliar application in the presence of virus with these three (zero, 1.5 and three milliliter of Fe fertilizer per liter of water). First, two varieties of RioGrand and Mobil tomato seeds were prepared and planted in seedlings. Then, in the two-leaf stage, they were transferred to pots filled with sterile soil and kept in greenhouse conditions. After seedling establishment, the first foliar application of Fe fertilizer was done and in the five to seven leaf stage, the virus was inoculated on all leaves. Then, the second stage of fertilizer was applied 10 days after the first fertilizer and finally, after the last stage of foliar application, the samples were transferred to the laboratory. In Order to accurately investigate the effect of Fe on important plant factors, extracts were taken from the samples. Then, the amount of antioxidants, carbohydrates, Flavonoids, Chlorophyll (a, b and total chlorophyll) and phenol was measured. Finally, the final data analysis was performed using SAS statistical software.
Results
 The results showed that the simple effect of cultivar on the amount of phenol and flavonoids was significant at the level of one percent and the highest amount of phenol was recorded in Mobil cultivar and the highest amount of flavonoids was recorded in RioGrand cultivar. The effect of treatments on chlorophyll a, total chlorophyll index and antioxidant enzymes was significant at the level of 1% probability and carbohydrate content at the level of 5% probability. The results showed that feeding Fe at a concentration of 1.5 milliliter had a favorable effect on carbohydrate content and increased its amount in infected plants compared to control plants. This Increase effect may be useful for improving tolerance in a variety of tomatoes. According to the results, an increase in foliar application concentration to 3 milliliters led to a decrease in carbohydrate levels. Mechanical inoculation with a positive sample of the virus resulted in plant contamination. However, virus infection increased carbohydrate and antioxidant enzyme levels in tomatoes. The effect of cultivar on treatment was only significant in the amount of antioxidant enzymes at a one percent probability level, with the Mobil cultivar showing the highest response to virus infection treatment. Therefore, it can be concluded that a concentration of 1.5 milliliters of Fe fertilizer could be effective in increasing carbohydrate levels, as well as utilizing enzymatic and non-enzymatic antioxidant components to prevent viral penetration to some extent and reduce symptoms, particularly in the Mobile cultivar. However, the RioGrand cultivar produced less antioxidant components. Different cultivars of the same plant species have been reported to have varying responses to different types of infections, such as viruses, fungi, and bacteria. These differences are attributed to genetic variations among cultivars, which leads to different resistance mechanisms.
Conclusion
 The final results showed that in the early stages of greenhouse tomato growth, Fe nutrition had an effect on the biochemical properties of the plant and had a positive effect on some traits. In total, Fe fertilizer with a concentration of 1.5 milliliter increased carbohydrates in plants infected with Tomato spotted wilt virus and together with phenol and antioxidants affected the spread of the virus, especially in Mobil cultivar.

کلیدواژه‌ها [English]

  • Biochemical traits
  • Bunyaviridae
  • Mechanical inoculation
  • Nutrients
  • Tospovirus
  1.  

    1. Abdullahi, A.R., Nasrollah Nejad, S., Jafari, S.M., Yazdanian, M., & Taghi Nasab, M. (2015). Evaluation of changes in protein and phenolic compounds in the leaves of susceptible and resistant tobacco cultivars infected with potato virus (PVY). Journal of Plant Production Research 22(3): 129-153. (In Persian). https://jopp.gau.ac.ir/article_2672_1f875d951b1c5f1b4b14a22359842f57.pdf
    2. Afroz, A., Chaudhry, Z., Rashid, U., Khan, M.R., & Ali, G.M. (2010). Enhanced regeneration in explants of tomato (Lycopersicon esculentum) with the treatment of coconut water. African Journal of Biotechnology9(24): 3634-3644.
    3. Ashfaq, M., Khan, M.A., Javed, N., Mughal, S.M., Shahid, M., & Sahi, S.T. (2010). Effect of urdbean leaf crinkle virus infection on total soluble protein and antioxidant enzymes in blackgram plants. Pakistan Journal of Botany42(1): 447-454.‏
    4. Askari, M., Amini, F., & Jamali, F. (2014). Effects of Zinc on growth, amount of photosynthetic pigments, proline, protein and carbohydrates of tomato under salinity stress. Journal of Plant Process and Function 3(9): 45-58. (In Persian). http://jispp.iut.ac.ir/article-1-115-fa.html
    5. Atkinson, N.J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63(10): 3523-3543.‏ https://doi.org/10.1093/jxb/ers100
    6. Azad, H., Fakheri, B.A., Mehdi Nejhad, N., & Parmoon, Q. (2018). The effect of drought stress and foliar application of iron nanochlat on the activity of antioxidant enzymes and flower yield of chamomile ecotypes )Matricaria chamomilla L .(.Journal of Plant Process and Function 7(26): 223-238. (In Persian). http://dorl.net/dor/20.1001.1.23222727.1397.7.26.3.2
    7. Azadqujeh Biglo, H., Fakheri, B.A., Mehdi Nejhad, N., & Parmoon, Q. (2017). Response of different irrigation on nano iron chelated to chamomile (Matricaria chamomilla ) genotypes. Journal of Crop Ecophysiology 11(3): 565-584. (In Persian with English abstract). https://jcep.tabriz.iau.ir/article_536646.html.
    8. Bandeoğlu, E., Eyidoğan, F., Yücel, M., & Öktem, H.A. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation42(1): 69-77.‏ https://doi.org/10.1023/B:GROW.0000014891.35427.7b
    9. Barzegar, T., Isfahani, Z., Qahramani, Z., & Nikbakht, J. (2019). Investigation of some Physiological and biochemical responses of Tomato cultivar (Lycopersicon esculentum Rio Grande) to foliar application of bio-stimulant under low water stress. Journal of Plant Process and Function 8(29): 229-239. (In Persian). http://jispp.iut.ac.ir/article-1-852-fa.html.
    10. Bystricka, J., Vollmannova, A., & Margitanova, E. (2010). Dynamics of polyphenolics formation in different plant parts and different growth phases of selected buckwheat cultivars. Acta Agriculturae Slovenica95(3): 225.‏ https://doi.org/10.2478/v10014-010-0014-0.
    11. Chen, S., Gu, H., Wang, X., Chen, J., & Zhu, W. (2011). Multiplex RT-PCR detection of Cucumber mosaic virus subgroups and Tobamoviruses infecting Tomato using 18S rRNA as an internal control. Acta Biochim Biophys Sin43(6): 465-471.‏ https://doi.org/10.1093/abbs/gmr031.
    12. Clarke, S.F., Guy, P.L., Burritt, D.J., & Jameson, P.E. (2002). Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiologia Plantarum114(2): 157-164.‏ https://doi.org/10.1034/j.1399-3054.2002.1140201.x.
    13. Cook, N.C., & Samman, S. (1996). Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry7(2): 66-76.‏ https://doi.org/10.1016/S0955-2863(95)00168-9.
    14. Flores, F.B., Sanchez-Bel, P., Estañ, M.T., Martinez-Rodriguez, M.M., Moyano, E., Morales, B., & Bolarín, M.C. (2010). The effectiveness of grafting to improve tomato fruit quality. Scientia horticulturae125(3): 211-217.‏ https://doi.org/10.1016/j.scienta.2010.03.026
    15. Ghotbi, T., Shahraeen, N., & Winter, S. (2005). Occurrence of tospoviruses in ornamental and weed species in Markazi and Tehran provinces in Iran. Plant Disease89(4): 425-429.‏ https://doi.org/10.1094/PD-89-0425.
    16. Golnaraghi, A. R., Pourrahim, R., Farzadfar, S., & Ahoonmanesh, A. (2007). Identification and partial characterization of a Tospovirus causing leaf and stem necrosis on potato. Plant Pathology Journal (Faisalabad)6(3): 227-234.‏ https://doi.org/10.3923/ppj.2007.227.234.
    17. Gonçalves, L.S.A., Rodrigues, R., Diz, M.S.S., Robaina, R.R., Júnior, A., Carvalho, A., & Gomes, V. (2013). Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum. Genetics and Molecular Research12: 1411-1420.‏ https://doi.org/10.4238/2013.April.26.3.
    18. Hadi, M.R., Balali Dehkordi, G.R., Moosavi, S.M.R., & Hosseini, F. (2014). The Effects of salicylic acid in reducing potato virus Y damage in two potato (Solanum tuberosum ) cultivars, Agria and Marfona. Iranian Journal of Plant Biology 6(20): 171-183. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20088264.1393.6.20.12.5
    19. Hall, R. (2009). Mechanical inoculation of plant viruses. Current protocols in Microbiology 3(2): 13-19. https://doi.org/10.1002/9780471729259.mc16b06s13.
    20. Haghighi, M., and Abolghasemi, R. (2019). The Effect of High and Low Temperature Stress on Growth, Photosynthesis and Antioxidant Activity in Vegetative Growth Stage of Tomato. Journal of Vegetable Sciences 3(5): 53-65. (In Persian)
    21. Herbers, K., Takahata, Y., Melzer, M., Mock, H.P., Hajirezaei, M., & Sonnewald, U. (2000). Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Molecular Plant Pathology1(1): 51-59.‏ https://doi.org/10.1046/j.1364-3703.2000.00007.x.
    22. Jaakola, L., Määttä, K., Pirttilä, A.M., Törrönen, R., Kärenlampi, S., & Hohtola, A. (2002). Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology130(2): 729-739.‏ https://doi.org/10.1104/pp.006957.
    23. Kaye, A.C., Moyer, J.W., Parks, E.J., Carbone, I., & Cubeta, M.A. (2011). Population genetic analysis of Tomato spotted wilt virus on peanut in North Carolina and Virginia. Phytopathology101(1): 147-153.‏ https://doi.org/10.1094/PHYTO-01-10-0035.
    24. Krizek, D.T., Britz, S.J., & Mirecki, R.M. (1998). Inhibitory effects of ambient levels of solar UV‐A and UV‐B radiation on growth of cv. New Red Fire lettuce. Physiologia Plantarum103(1): 1-7 https://doi.org/10.1034/j.1399-3054.1998.1030101.x.
    25. Krizek, D.T., Mirecki, R.M., & Britz, S.J. (1997). Inhibitory effects of ambient levels of solar UV‐A and UV‐B radiation on growth of cucumber. Physiologia Plantarum100(4): 886-893.‏
    26. ‏ Labuckas, D.O., Maestri, D.M., Perello, M., Martínez, M.L., & Lamarque, A.L. (2008). Phenolics from walnut (Juglans regia) kernels: Antioxidant activity and interactions with proteins. Food Chemistry107(2): 607-612.‏ https://doi.org/10.1016/j.foodchem.2007.08.051.
    27. Lian, S., Lee, J.S., Cho, W.K., Yu, J., Kim, M.K., Choi, H.S., & Kim, K.H. (2013). Phylogenetic and recombination analysis of tomato spotted wilt virus. PloS One8(5): 63380.‏ https://doi.org/10.1371/journal.pone.0063380.
    28. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology148: 350-382.‏ https://doi.org/10.1016/0076-6879(87)48036-1.
    29. Mocready, R. M., Guggolz, J., Silviera, V., & Owens, H.S. (1950). Determination of starch and amylose in vegetables. Application to peas. Analytical Chemistry 22: 1156-1158.‏ http://dx.doi.org/10.1021/ac60045a016.
    30. Mokhtary, I., Ganjali, A., & Abrishamchi, P. (2010). Ameliorative Effects of CaCl2 and CaSO4 on growth, content of solouble proteins, solouble sugars, proline and some mineral nutrients (Na+, K+) in leaves of Lycopersicon esculentom var Mobile under salt stress. Iran Journal of Plant Biology 23(1): 62-72. (In Persian with English abstract)
    31. Mostafavi Neishaburi, F.S., Sabbagh, S.K., Yamchi, A., Nasrollanejad, S., & Panjekeh, (2018). Molecular study on some of physiological changes in susceptible and tolerant genotypes of maize in response to Maize Dwarf Mosaic Virus infection. Journal of Applied Research in Plant Protection 7(3): 1-17. (In Persian with English abstract). https://sid.ir/fa/journal/AdvanceWriter.aspx?str.
    32. Pappu, H.R., Jones, R.A.C., & Jain, R.K. (2009). Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research141(2): 219-236.‏ https://doi.org/10.1016/j.virusres.2009.01.009.
    33. Qorbani, A., Izadpanah, K.O., Hamzeh Zarqani, H.O., & Alamzadeh, E. (2017). Evaluation of physiological changes in resistant and susceptible sugar beet cultivars to Beet Necrotic Yellow Vein Virus. Journal of Sugar Beet 33(2): 209-219. (In Persian). https://doi.org/10.22092/jsb.2017.110056.1153
    34. Rostami, Q., Moghadam, M., Ghasemi Pir Balouti, A.O., & Tehranifar, A. (2018). Effect of Foliar application of iron and zinc to sulfated and nanoparticle forms on morphological and biochemical properties of peppermint (Mentha piperita L.) under salinity stress. Environmental Stresses in Crop Sciences 11(3): 707-720. (In Persian). https://doi.org/10.22077/escs.2018.870.1170.
    35. Sanchez-Rodriguez, E., Rubio-Wilhelmi, M., Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., & Ruiz, J.M. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science178(1): 30-40.‏
    36. Shahi Qaralar, A., Fatahi Moghadam, M.R., Zamani, Z.O., & Maali-Amiri, R. (2020). Study of Physiological and biochemical responses of some hazelnut cultivars under drought stress and re-watering conditions. Iranian Journal of Horticultural Science 51(1): 229-244. (In Persian with English abstract). https://doi.org/10.22059/ijhs.2018.219771.1119.
    37. Shokhmgar, M., Baradaran, R., Mosavi, h.R., Poyan, M., & Arazmjoo, E. (2013). Effects of Irrigation interval and nitrogen on seed yield and physiological characteristics of Fenugreek (Trigonella foenum-gracum L.). Iranian Journal of Medicinal and Aromatic Plants 29(3): 527-538. (In Persian with English abstract). https://doi.org/10.22092/ijmapr.2013.4037.
    38. Shoshtari, S., Jafarpour, B., & Falahati-Rastegar, M. )2011(. Molecular and serological detection of Tomato spotted wilt virus from Khorasan-Razavi. Plant Protection 26: 348-356. (In Persian with English abstract)
    39. Singh, D.P., & Riwari, R.S. (1996). Effect of micronutrients on yield and quality of onion (Allium cepa) variety Pusa Red. Horticulture3(1): 111-117.‏
    40. Smeekens, S. (2000). Sugar-induced signal transduction in plants. Annual Review of Plant Biology51(1): 49-81.‏ https://doi.org/10.1146/annurev.arplant.51.1.49.
    41. Sundararaju, P., & Suba, K.P. (2006). Biochemical and molecular changes in banana plants induced by Pratylenchus coffeae and Meloidogyne incognita. Indian Journal of Nematology36(2): 239-242.‏
    42. Tariqi, S., Ebadi, A., & Dehghan Nairi, M. (2019). The Role of Fe in plant pathogens. Mashhad: Ferdowsi University of Mashhad Press.
    43. Turkmen, N., Sari, F., & Velioglu, Y.S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry93(4): 713-718.‏ https://doi.org/10.1016/j.foodchem.2004.12.038.
    44. Van Assche, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment13(3): 195-206. http://dx.doi.org/10.1111/j.1365-3040.1990.tb01304.x.
    45. Wei, D., Zhang, W., Wang, C., Meng, Q., Li, G., Chen, T.H., & Yang, X. (2017). Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Science257: 74-83.‏ https://doi.org/10.1016/j.plantsci.2017.01.012.
    46. Zarinjoo, A., Saadati, M., Safaie, N., & Shams-bakhsh, M. (2020). Interaction of Turnip mosaic virus or Cauliflower mosaic virus with Phoma lingam in Canola. Plant Diseases 56(3): 303-318. (In Persian with English abstract). https://doi.org/10.22034/ijpp.2020.241965.

     

CAPTCHA Image
  • تاریخ دریافت: 18 بهمن 1400
  • تاریخ بازنگری: 06 فروردین 1401
  • تاریخ پذیرش: 21 اردیبهشت 1401
  • تاریخ اولین انتشار: 21 اردیبهشت 1401