اثر جلبک‌های اسپیرولینا و قهوه‌ای و سطوح سرب بر برخی شاخص‌های مورفوفیزیولوژیکی گیاه کلم زینتی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان

2 عضو هئیت علمی گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان

3 استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

سرب یکی از فلزات سنگین و آلاینده‌های مهم زیست بوم شناخته شده است. استفاده از گیاهان جهت رفع آلودگی خاک یا گیاه‌پالایی، روشی مقرون به صرفه می‌باشد. امروزه با توجه به افزایش آلودگی منابع خاک و مشکلات ناشی از آن، شناسایی گیاهان مفید در این زمینه ضروری به‌نظری می‌رسد. این پژوهش به منظور بررسی تأثیر فلز سنگین سرب و کاربرد جلبک قهوه‌ای و اسپیرولینا بر کلم زینتی رقم ’پیچ­دار‘ (Brassica oleracea L.) و بررسی گیاه­پالایی در این گیاه انجام گردید. آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی در سال 1399 در گلخانه تحقیقاتی و پژوهشی دانشگاه زنجان انجام شد. فاکتورهای مورد بررسی شامل سرب از منبع نیترات سرب با سه غلظت (صفر، 25و50 میلی‌­گرم بر کیلوگرم) در چهار تکرار و در دو مرحله با فاصله زمانی دو هفته به خاک گلدان‌ها اعمال شد. فاکتور دوم شامل عدم وجود جلبک (شاهد)، جلبک قهوه‌ای (Polycladia indica) و جلبک اسپیرولینا(Arthrospira platensis)  در چهار تکرار بود. صفات مورفوفیزیولوژیکی اندازه­گیری شده نیز شامل تعداد برگ­های هر بوته، شاخص سطح برگ، وزن تر و خشک ریشه، کلروفیل کل، آنتی­اکسیدان کل، آنزیم پراکسیداز، گلایسین بتائین، مالون دی آلدهید، سرب برگ و فسفر برگ بود. نتایج تجزیه واریانس حاکی از تاثیر معنادار سطوح مختلف سرب و اثر جلبک­ها بر صفات تعداد برگ‌های هر بوته، شاخص سطح برگ و وزن‌تر و خشک ریشه‌، کلروفیل کل و آنتی­اکسیدان کل بود. علاوه بر این اثرات متقابل برای صفات شاخص سطح برگ، وزن تر و خشک ریشه، آنتی‌اکسیدان کل و میزان سرب برگ معنی­دار گردید. مقادیر گلایسین بتائین، مالون دی آلدهید و فسفر برگ در اثر اصلی سرب در سطح یک درصد معنی­دار شد. طبق نتایج مقایسه میانگین میزان سرب برگ با افزایش غلظت سرب بیشتر شده است که البته جلبک­ها به عنوان یک عامل کمکی می‌توانند میزان جذب سرب موجود در گیاه را کاهش دهند. میزان فسفر برگ نیز تحت تاثیر اثر اصلی سرب و جلبک معنی­دار شد و بیشترین میزان فسفر با میانگین درصد 56/0 درصد در جلبک اسپیرولینا و کمترین 48/0 درصد در شاهد مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Spirulina and Brown Algae and Lead Levels on some Morphophysiological Characteristics of Ornamental Cabbage

نویسندگان [English]

  • Afsaneh Hooshmand 1
  • Mitra Aelaei 2
  • Masoud Arghavani 3
  • Fahimeh Salehi 1
1 Department of Horticulture, Faculty of Agriculture, University of Zanjan
2 Faculty member, Department of Horticultural Sciences, Faculty of Agriculture, Zanjan University
3 Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Introdaction
 Heavy metals are one of the most important environmental contaminants, particularly in soil and water sources. Mining and metal mining activities are major factors in soil contamination and generally surface soil around mines contain high amounts of these metals. Lead (Pb) is one of the heavy metals and important pollutant in arid ecosystem. The use of plants to remove contaminated soil or phytoremediation is an economical method. Today, due to increasing the pollution of soil sources and resultant problems, identification of the resistant plant species against soil pollution is essential. Using lead-contaminated soils requires their decontamination and improvement. There are different methods to remove these pollutions, one of them is the use of phytoremediation to remove pollutants from water and soil or to reduce them. Among the plants that as an ornamental plant can have a covering role in the green space and also perform the work of phytoremediation is the ornamental cabbage plants (Brassica oleracea L.). In this regard, this study was conducted with the aim of investigating the effect of lead heavy metals and the use of brown algae (Polycladia indica) and spirulina (Arthrospira platensis) as biofertilizers on ornamental cabbage plants in the direction of plant treatment. In addition, due to the presence of polysaccharide compounds such as carrageenan and alginate in the cell wall, algae (seaweeds) have a higher ability to absorb many heavy metals.
Materials and Methods
 The experiment was conducted as factorial based on a completely randomized design in 2020 at the research greenhouse of Zanjan University. The studied factors including lead from lead nitrate source Pb(No3)2 with three concentrations (0, 25 and 50 mg/kg) were applied to the potting soil in four replications in two stages with an interval of two weeks. The second factor was included no algae, brown algae (Polycladia indica) and spirulina (Arthrospira platensis), which occurred in four replications. The measured traits included morphological traits: number of leaves, leaf surface index. Wet and dry root weight, and physiological traits included total chlorophyll content, total leaf antioxidant, peroxidase enzyme, glycine betaine, malondialdehyde, and leaf lead and phosphorus content. Data analysis was performed using SAS software and means were compared by LSD method.
Results
 The results of the variance analysis showed that different levels of lead and the application of algae had a significant effect on the number of leaves per plant, leaf area index, weight, and drying of roots, total chlorophyll, and antioxidants. Moreover, the interaction effect was significant for leaf area, root fresh and dry weight, antioxidants, and leaf lead content. The simple effect of lead at p≤0.01 significantly affected glycine betaine, malondialdehyde, and leaf phosphorus. When comparing the average mutual effects of lead and algae application, it was found that the treatment with no use of lead and spirulina algae resulted in the highest weight and dry weight of the root, with an average of 11.19 and 3.625 grams, respectively. Additionally, despite the decrease in dry weight of the root due to increased lead concentration, using algae, especially for ornamental cabbage (Brassica oleracea L.), increased the dry weight of the root. The presence of natural plant hormones, organic substances, carbohydrates, fiber and amino acids in algae accelerates rooting, reduces stress caused by heavy metals and absorbs more water due to the presence of o developed root system. Also according to the results of comparing the amount of leaf lead with increasing lead, algae as an auxiliary factor can reduce the amount of uptake in the plant. Leaf phosphorus was also significant due to the simple effect of lead and algae. The highest amount of phosphorus with an average of 0.56% was observed in spirulina and the lowest with 0.48% was observed in control.
Conclusion
 In general, due to the toxicity of lead metal even in low concentrations, sufficient attention should be paid to the sources of this pollutant entering the environment. In this study, the effective parameters on the uptake of heavy metal lead from the soil by spirulina and brown algae were investigated. The findings of this study indicate that the ornamental cabbage plant is capable of sustaining its growth in the presence of lead and has a high resistance to this heavy metal while simultaneously absorbing it from the soil. Furthermore, the addition of algae as an auxiliary factor can improve the growth of ornamental cabbage under adverse conditions. Therefore, it is recommended that this plant be further examined for its potential to absorb other heavy metals.

کلیدواژه‌ها [English]

  • Bio-fertilizer
  • Heavy metals
  • Malondialdehyde
  • Phosphorus
  • Phytoremediation
  1. Abdollahi, S., & Golchin, A. (2018). Evaluate ability of uptake and translocation of lead in three varieties of Cabbage. Iranian Journal of Soil and Water Research 49(1): 145-158. (In Persian with English abstract).
  2. Al-Homaidan, A.A., Alabdullatif, J.A., Al-Hazzani, A.A., Al-Ghanayem, A.A., & Alabbad, A.F. (2015). Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences 22: 1-6.
  3. Alizadeh, A. (2008). Water, soil, plant. Astane ghodse razavi, 8th
  4. Altagic, J., & Secerov-Fiser, V. (2005). Interspecific hybridization and cytogenetic studies in ornamental sunflower breeding. Experimental Agriculture 45: 93-97.
  5. Almeida, A.F., Valle, A.A., Mielke, M.S., Gomes, F.P., & Braz, J. (2007). Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Plant Physiology 19:83-98.
  6. Aly, M.S., & Esawy, M.A. (2008). Evaluation of Spirulina Platensis as bio. stimulator for organic farming systems. Journal of Genetic Engineering and Biotechnology 6(2): 1-7.
  7. Arghavani, M. (2009). Physiological and morphological study of Lollium and Poa Pratensis grasses, under the influence of tringazapkatil application, head management and nitrogen source under salinity stress. Ph.D. Thesis. Department of Horticulture, University of Tehran. Pp 97-102.
  8. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology 24: 1-15.
  9. Ashraf, M., & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59: 206-216.
  10. Azmat, R., Haider, S., Hajra, N., & Farha, A. (2009). A viable alternative mechanism in adapting the plants to heavy metal environment. Pakistan Journal of Botany 41(6): 2729-2738.
  11. Begzadeh, S., Maleki, A., Mirzaei hidarei, M., Rangin, A., & Khorgami. (2020). Effect of application of salicylic acid and seaweed extract (Ascophyllum nodosum) some physiological traits of white bean (Phaseolus lanatus) under drought stress conditions, Scientific Journal of Crop Ecophysiology
  12. Bhattacharya, P.T., Misra, S.R., & Hussain, M. (2016). Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica Pp 25-38.
  13. Crouch, I., & Van Staden, J. (1993). Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul 13(1): 21–29.
  14. Cheremisinoff, N.P. (2002). Handbook of water and waste water treatment technologies. Butter worth Heinemann, Technology and Engineering.
  15. Dauda, M.K., Variatha, M.K., Shafaqat, A., Najeeba, U., Jamilb, M., Hayat, Y., Dawooda, M., Khand, M.I., Zaffar, M., Cheemad., S.A., Tonga, X.H., & Zhua, S. (2009). Cadmiuminduced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. Journal Hazard Mater 168: 614-625.
  16. Dehghan, G., & Khoshkam, Z. (2012). Tin (II)-quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chemistry 131(2): 422-426.
  17. Delorme, T.A., Gagliardi, J.V., Aanle, J.S., & Chaney, R.L. (2001). Influence of the Zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl and the nonmetal accumulator Trifolium Pratense L. on soil microbial populations. Canadian Journal Micorobiology 47(8): 773-776.
  18. Dhindsa, R.S., Plumb-Dhindsa, P., & Thorpe, T.A. (1981). Leaf senescence: correlated with increased levels of member permeability and peroxidation, and decreased levels of superoxide dismutase and catalase. Jounal of Experimental Botarry 32(1): 93-101.
  19. Garazhian, H., Emami, A., Fotovat, A., & Amiri Khaboushan, E. (2020), Comparison phytoremediation potential of Pb from contaminated soil by Vetiveria zizanioides and Brassica oleraceae, Journal of Soil Management and Sustainable 10(2): 1-23. (In Persian with English abstract). http://doi.org/10.22069/ejsms.
  20. Geebelen, W., Vangronsveld, J., Adriano, D.C., Van Poucke, L.C., & Clijsters, H. (2002). Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiologia Plantarum 115: 377-384. https://doi.org/10.1034/j.1399-3054.2002.1150307.x
  21. Ghaderian, S.M., Hemmat, G.R., Reeves, R.D., & Baker, A.J.M. (2007). Colonizing a metal mining area in Central Iran. Journal of Applied Botany and Food Quality 18: 145-150.
  22. Ghosh, M., & Singh, S.P.A. (2005). Review on Phytoremediation of Heavy Metals and Utilization of It’s by Products. Journal Energy Environmental 6(04): 214 -231.
  23. Golchin, A., Ismaili, M., & Takasi, m. (2005). Contaminant sources of soil and agricultural and horticultural products of Zanjan province to heavy metals, Management and Planning Organization of Zanjan province, Pp 134.
  24. Grieve, C., & Grattan, S.J.P. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Soil 70: 303-307.
  25. Gupta, P.K. (2009). Soil plant water and fertilizer Analysis. Agrobios pub, New Dehli 4: 40-88.
  26. Hanaa, H., Baky, A.E., Baz, F.K.E., & Gamal, S. (2007). Enhancement of Antioxidant Production in Spirulina Platensis under Oxidative Stress. Eurasian J. of Scientific Research 2(2): 170-179.
  27. Holan, Z.R., Volesky, B., & Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnologe. Bioengeneering 41: 819-825. https://doi.org/10.1002/bit.260410808.
  28. Ismaili, A., Beyrami, P., Roustaian, A., & Beyrami, A. (2008). Investigation of biological uptake of Co (II) ions from aqueous solutions by Gracylaria algae. Scientific Information Database Journal 1(12): 8-2.
  29. Jafari, N., & Ahmadi asbchin, S. (2013). Adsorption of cadmium and lead ions from aqueous solution by brown algae Cystoseira indica. Journal of plant researches. Iranian journal of biology, 27 (1): 23-31. (In Persian with English abstract) https://doi.org/10.1021/ie302011n
  30. Jing, D., Fei-bo, W.U., & Guo-ping, Z. (2005). Effect of cadmium on growth and photosynthesis of tomato seedlings. Journal of Zhejiang University Sinece 6(10): 974-980.
  31. Khudsar, T., Uzzafar, M., Soh, W.Y., & Iqbal, M. (2000). Morphological and anatomical variations of Cajanus cajan (Linn. Huth) raised in cadmium-rich soil. Journal Plant Biology 43: 149-157. https://link.springer.com/article/10.1007/BF03030492 - Search (bing.com)
  32. Kolah kaj, A., & Mohammadi Rouzbahani, M. (2017). Survey Effectiveness of Althea officinal in Pb Heavy Metal Accumulation, Science and Technology Ocean Sist 19(1): 72-73. (In Persian)
  33. Malea, P., Kevrekidis, T., & Haritonidis, S. (2005). The short term uptake of zinc and cell mortality of the sea grass Halophyllastipulecea. Journal Plant Science 43: 21-30.
  34. Marchiol, L., Assolari, S., Sacco, P., & Zerbi, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution 1(32): 21-27.
  35. Mir Ahmadi, H., & Safari Sanjani, A. (2007). Soil contamination with lead and its reduction trend in some soils of Gilan. 10th Iranian Soil Science Congress.
  36. Moradi, F., Najafi, S.h., & Esmailzadeh Bhabadiy, S. (2019). The effect green algae extract (Ulva fasciata ) on growth and physiological indices of sesame plant (Sesamum indicum L.). Journal of Plant Process and Function 14-1.
  37. Motasharzadeh, B., Aghaei, L., & Sawaghebi, G.h.R. (2013). The effect of cadmium and lead application on the absorption of these elements and the growth of two cultivars of pinto beans. Journal of Environmental Stresses in Crop Sciences 2(2): 252-223.
  38. Mtolera, M.S.P., Collen, J., Pedersen, M., & Semesi, A.K. (2012). Destructive hydrogen peroxide production in Eucheuma denticulatum (Rhodophyta) during stress caused by elevated pH, high light intensities and competition with other species. European Journal of Phycology 30(4): 289-297. https://doi.org/10.1080/09670269500651071
  39. Nelson, W., & VanStaden, J. (1984). The effect of seaweed concentrates on wheat culms. Journal of Plant Physiology 115: 433-437.
  40. Nriagu, J.O., & Pacyna, J.M. (1988). Quantitative assessment of worldwide contamination of air, water and soil by trace metals. Nature 333: 134-139.
  41. Ouzounidou, G. (2004). Cu ions mediated changes in growth, chlorophyll and other ion contents in a Cu tolerant Koeleriasplendens. Biologia Plantarum 37: 71- 78.
  42. Pais, I., & Jones, J.B. (2000). The Handbook of Trace Elements. St. Luice Press. Florida 223-224.
  43. Pitchel, J., & Bradway, D.J. (2008). Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site. Bioresource Technology 99: 1242-1251.
  44. Powell, N., Shilton, A.N., Pratt, S., & Chisti, Y. (2008). Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environmental Science and Technology 42: 5958-5962.
  45. Prakash, P.S., Medhi, S., Saikia, G., Narendrakumar, A., Thirugnanasambandam, L., & Abraham, S. (2014). Production, formulation and application of seaweed liquid fertilizer using humic acid on growth of Arachis hypogaea. Biosciences Biotechnology Research Asia 11(3): 1515-1519.
  46. Przedpelska, E., & Wierzbicka, M. (2007). Arabidopsis arenosa (Brassicaceae) from leadzinc waste heap in southern Poland a plant with high tolerance to heavy metals. Plant & Soil 299: 43-53. https://doi.org/10.1007/s11104-007-9359-5.
  47. Qelich, S., Zarrin Kemar, F., & Niknam, A. (2015). Investigation of lead accumulation and its effect on peroxidase activity, content of phenolic and phallonoid compounds in the germination stage in alfalfa (Sativa Medicago). Journal Plant Research 22(3): 314-313.
  48. Ramos, I., Estcban, E., Luccna, J.J. & Garate, A. (2002). Cadmium uptake and subccllular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science 162: 761-767.
  49. Rezvani, M., Zafarian Fand Qolizadeh, A. (2012). Absorption of lead and nutrients by saline grass plant under the influence of different levels of lead in the soil. Journal of Water and Soil 22(3): 234-236.
  50. Seregin, I.V., & Ivanov, V.B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Plant physiology 48(4): 523-544.
  51. Shahbazi, F., Seyyed nejad, M., Salimi, A., & Gilani, A. (2015). Effect of seaweed extracts on the growth and biochemical constituents of wheat. International Journal of Agriculture and Crop Sciences 8(3): 283-287.
  52. Sharma, P., & Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology 17(1): 35-52.
  53. Shehata, M.M., & El-Khawas, S.A. (2003). Effect of two biofertilizers on growth parameters, yield characters, nitrogenous components, nucleic acids content, minerals, oil content, protein profiles and DNA banding pattern of sunflower (Helianthus annus L. Vedock) yield. Pakistan. Journal of Biological Sciences 6(14): 1257-1268.
  54. Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology 43(3): 246-248.
  55. Sivasankari, S., Venkatesalu, V., Anantharaj, M., & Chandrasekaran, M. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource Technology 97: 1745-1751.
  56. Stanisavljevic, N., Savic, J., Jovanovic, Z., Miljus-Djukic, J., Radovic, S., Vinterhalter, D., & Vinterhalter, B. (2012). Antioxidative-related enzyme activity in Alyssum markgrafii shoot cultures as affected by nickel level. Acta Physiol Plant 34(5): 1997–2006.
  57. Sychta, K., Słomka, A., Suski, S., Fiedor, E., Gregoraszczuk, E., & Kuta, E. (2018). Suspended cells of metallicolous and nonmetallicolous Viola species tolerate, accumulate and detoxify zinc and lead. Plant Physiology and Biochemistry 132: 666- 674. https://doi.org/10.1016/j.plaphy.2018.10.013
  58. Tu, C., Ma, L.Q., & Bondada, B. (2002). Arsenic accumulation in the hyperaccumulator chinese brake and its utilization potential for phytoremediation. Journal Environmental Quality 31: 1671 -1675. https://doi.org/10.2134/jeq2002.1671
  59. Warwick, S.I. (2011). Brassicaceae in Agriculture in: R. Schmidt and I. Bancroft (Eds). Genetics and Genomics of the Brassicaceae Springer Verlag, New York, 9: 33-66.
  60. Xu, C., & Leskovar, D. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition valued under drought stress. Scientia Horticulturae 183: 39–47.
  61. Yang, W.J., Rich, P.J., Axtell, J.D., Wood, K.V., Bonham, C.C., Ejeta, G. & Rhodes, D. (2003). Genotypic variation for glycinebetaine in sorghum. Crop Science 43(1): 162-169.
  62. Yu, D., Yan, X., Wang, A. & Wang, H. (2006). Response of submerged plant (Vallisneria spinulosa) clones to lead stress in the heterogenous soil. Chemosphere 63: 1459-1465.
  63. Zarei, M., Saleh Rastin, N., & savaghebi, A.R. (2011). Efficacy of arbuscular mycorrhizal fungi in phytoremediation of soils contaminated with zinc by maize. Journal of Agricultural Science and Technology and Natural Resources Soil and Water Sciences 55: 151-166.
CAPTCHA Image