افزایش ترکیبات آنتی‌اکسیدانی و حفظ کیفیت ظاهری میوه گیلاس در زمان پس از برداشت تحت تأثیر اسانس مرزنجوش

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

گیلاس از جمله میوه­هایی است که بدلیل فسادپذیری بالا متحمل ضایعات فیزیولوژیکی پس از برداشت می­شود. باتوجه به اثبات فعالیت ضد قارچی اسانس­های گیاهی، استفاده از آن­ها به­عنوان یک ایده طبیعی در جهت کاهش ضایعات پس از برداشت، افزایش ماندگاری و تضمین سلامت مصرف‌کنندگان محصولات باغبانی مطرح می­باشد. در تحقیق حاضر، تأثیر غلظت­های مختلف اسانس مرزنجوش (صفر، 250، 500، 750 و 1000 میکرولیتر در لیتر) و زمان انبارداری (روز 15ام و 30ام) بر واکنش­های بیوشیمیایی میوه گیلاس شامل فعالیت آنزیم فنیل آلانین آمونیالیاز، محتوای آنتوسیانین کل، میزان اسید آسکوربیک، رنگ بافت، فعالیت آنزیم پلی­فنل­اکسیداز، پوسیدگی و قهوه­ای شدن دم میوه با سه تکرار در قالب طرح کاملاً تصادفی مورد ارزیابی قرار گرفت. میوه­های تیمار شده به مدت 30 روز در دمای 1±0 درجه سانتی­گراد و رطوبت نسبی 95-90 درصد به سردخانه منتقل شدند. اندازه­گیری کیفی میوه­ها طی سه دوره زمانی قبل از نگهداری، روز 15ام و روز 30ام نگهداری انجام گرفت. نتایج حاصل از این ارزیابی نشان داد که اسانس مرزنجوش به طور معنی­داری فعالیت آنزیم فنیل­آلانین­آمونیالیاز، محتوای آنتوسیانین کل، میزان اسید آسکوربیک و تغییر رنگ را در سطح بالایی حفظ نمود. همچنین سرعت افزایش فعالیت آنزیم پلی­فنل­اکسیداز، تغییرپذیری رنگ بافت، پوسیدگی و قهوه­ای شدن دم میوه گیلاس را کاهش داد. این موارد منجر گردید تا با کاربرد اسانس مرزنجوش شاهد ثبات بازارپسندی این میوه طی روزهای نگهداری باشیم. در نهایت مطابق یافته­های پژوهش حاضر و با توجه به حفظ کیفیت و ماندگاری میوه­های گیلاس تیمار شده نسبت به میوه­های بدون تیمار، می­توان به جای ترکیبات شیمیایی مضر، اسانس مرزنجوش را به­عنوان افزودنی مجاز در زمان نگهداری میوه گیلاس توصیه نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Increasing Antioxidant Compounds and Maintaining the Appearance Quality of Cherry Fruit after Harvest under the Influence of Marjoram Essential Oil

نویسندگان [English]

  • Chnoor Hosseini 1
  • M.R. Asghari 1
  • M. Khezri 2
1 Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Introduction
 Cherry (Prunus avium L.) is one of the most important fruit products and due to its polyphenol and antioxidant compounds, it contributes to the nutrition and health of millions of people. Due to its high perishability, this fruit suffers from post-harvest physiological losses. According to the proven antifungal activity of plant essential oils, their use as a natural substance to reduce post-harvest waste, increase shelf life and ensure the health of consumers of horticultural products.
Material and Methods
 In the present study, the effect of marjoram essential oil in different concentrations (0, 250, 500, 750 and 1000 µl/l) on biochemical reactions of Mashhad cherry fruit var takdaneh, including phenylalanine ammonialyase enzyme activity, total anthocyanin content, ascorbic acid content, tissue color, polyphenol oxidase enzyme activity, fruit rot and browning of the tail were evaluated with three replications. The treated fruits were transferred to the refrigerator for 30 days at a temperature of 1.0 °C and a relative humidity of 90-95%. Qualitative measurements of fruits were performed during three periods before storage, on the 15th day and on the 30th day of storage. Analysis of variance (ANOVA) was performed based on factorial experiment in a completely randomized design. Mean comparison was performed based on Duncan's multiple range test using SAS software and its graphs were drawn with Excel. Finally, correlation analysis was performed using R software.
Results and Discussion
 The results of this evaluation showed that marjoram essential oil maintained the activity of phenylalanine ammonialyase enzyme, total anthocyanin content, ascorbic acid content and color significantly. It also reduced the activity of polyphenol oxidase activity, tissue color change, rot and browning of cherry fruit tail. The level of ascorbic acid in all treated samples decreased over time, but this decrease was more severe in the control sample than the other treatments. Increasing storage time and essential oil concentration improved the amount of anthocyanin in the treated fruits. The essential oil at a concentration of 750 μl/l avoided reduction of color change compared to the control. The activity of phenylalanine ammonialyase enzyme in all essential oil concentrations in both periods had an upward trend. The lowest and highest polyphenol oxidase enzyme activity were recorded in 750 μl/l essential oil treatment and control treatment, respectively. use of essential oil decreased the browning of the fruit tail in which, is probably due to the antioxidant activity of the essential oil. Also, the lowest rate of decay and the highest marketability were observed in the concentration of 750 μl/l of marjoram essential oil. On the other hand, there were significant correlations between most traits. Marketability as one of the most important traits had a positive correlation with traits such as ascorbic acid (r=0.82**) and fruit color (r=0.77**). These results clearly show that the increase of these traits leads to high marketability of cherry fruit. Also, the existence of a negative correlation between the rate of maintaining marketability with the traits of rot (r= -0.95**) and browning of the fruit tail (r= -0.89**) shows that with the increase of these traits, the marketability of the fruit decreases. Finally, according to the findings of the present study and considering the quality and durability of treated cherry fruits compared to untreated fruits, instead of harmful chemical compounds, marjoram essential oil can be recommended as an additive in cherry fruit.
Conclusion
 The use of plant essential oils as a natural method can be effective in increasing the shelf life of this fruit by preventing deterioration and degradation. The results of this study showed that marjoram essential oil at a concentration of 750 µl/l by increasing and maintaining ascorbic acid, anthocyanin, PAL enzyme activity, marketability and also by reducing the activity of PPO enzyme, color variability, degree of rot and browning of the fruit tail led to maintaining the internal quality and better durability of the cherry fruit during storage. The reason for this can be related to the phenolic and antioxidant compounds in marjoram essential oil. These compounds directly affect fruit spoilage and indirectly increase the host fruit's defense system and maintain fruit quality. According to the results of this study, marjoram essential oil with a concentration of 750 µl/l can be introduced as a healthy method to maintain physicochemical properties and improve the cherries quality characteristics after harvest.

کلیدواژه‌ها [English]

  • Biological compounds
  • Defense system
  • Fruit shelf life
  • Marketability
  1.  

    1. Al-Bayati, F.A., & Al-Mola, H.F. (2008). Antibacterial and antifungal activities of different parts of Tribulus terrestris growing in Iraq. Journal of Zhejiang University Science B 9(2): 154-159. https://doi.org/10.1631/jzus.B0720251.
    2. Asgari Marjanlu, A., Mostofi, Y., Shoeibi, S., & Maghoumi, M. (2009). Effect of basil (Ocimum basilicum) essential oil on gray mold control and postharvest quality of strawberry (cv. Selva). Journal of Medicinal Plants 8(29): 131-139. (In Persian with English abstract)
    3. Asghari, M.R. (2015). Novel (non-classic) plant hormones and growth regulators. Urmia University Press, 352 p. (In Persian)
    4. Asghari, M.R., Azarsharif, Z., Tajik, H., & Farrokhzad Nansa, A.R. (2019). Effect of galbanum gum coating combined with cumin essential oil and calcium chloride on qualitative and biochemical characteristics of sweet cherry. Journal of Horticultural Science 32(4): 665-680. (In Persian with English abstract)
    5. Asghari, M.R., Ghafari Baktash, H., & Farokhzad, A. (2018). Changes in quality of apple fruit (cv. Red Delicious) in response to postharvest salicylic acid and nitric oxide treatments. Plant Production Technology 10(1): 107-124. (In Persian with English abstract)
    6. Ayala-Zavala, J.F., Wang, S.Y., Wang, C.Y., & González-Aguilar, G.A. (2007). High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technology and Biotechnology45(2): 166-173.
    7. Barreto, T.A., Andrade, S.C., Maciel, J.F., Arcanjo, N.M., Madruga, M.S., Meireles, B., Cordeiro, Â.M., Souza, E.L., & Magnani, M. (2016). A chitosan coating containing essential oil from Origanum vulgare to control postharvest mold infections and keep the quality of cherry tomato fruit. Frontiers in Microbiology 7: 1724. https://doi.org/10.3389/fmicb.2016.01724.
    8. Beckman, C.H. (2000). Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants?. Physiological and Molecular Plant Pathology57(3): 101-110. https://doi.org/10.1006/pmpp.2000.0287.
    9. Castillo, S., Pérez-Alfonso, C.O., Martínez-Romero, D., Guillén, F., Serrano, M., & Valero, D. (2014). The essential oils thymol and carvacrol applied in the packing lines avoid lemon spoilage and maintain quality during storage. Food Control35(1): 132-136. https://doi.org/10.1016/j.foodcont.2013.06.052.
    10. Davari, M., & Ezazi, R. (2016). Study on the effects of four medicinal plant essential oils and two Trichoderma species on biocontrol of grape fruit rot fungi. Biological Control of Pests and Plant Diseases 5(1): 1-12. (In Persian with English abstract)
    11. de Souza, E.L., de Barros, J.C., de Oliveira, C.E.V., & da Conceição, M.L. (2010). Influence of Origanum vulgare essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureusInternational Journal of Food Microbiology137(2-3): 308-311. https://doi.org/10.1016/j.ijfoodmicro.2009.11.025.
    12. Dehestani Ardakani, M., & Mostofi, Y. (2018). Extension of storage life and quality properties of grape cv. 'Bidaneh Ghermez’ by Thymus essential oil. Iranian Journal of Horticultural Science 48(4): 753-764. (In Persian with English abstract)
    13. dos Santos, N.S.T., Athayde, A.J.A., Vasconcelos De, O.C.D., De Sales, C.V., De Melo, S., Sousa da, S.R., Montenegro, S.T.C., & De Souza, E.L. (2012). Efficacy of the application of a coating composed of chitosan and Origanum vulgare essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiology 32(2): 345-353. https://doi.org/10.1016/j.fm.2012.07.014.
    14. Ebrahimpour, A., Ghani, A., & Azizi, M. (2008). Effect of temperature, packaging and some natural compounds on storage improvement of Sour cherry (Prunus cerasus). Journal of Agricultural Sciences and Natural Resources 15(1): 28-38. (In Persian with English abstract)
    15. El-Sayed, S. F., Atress, A. S., Mahmoud, A. W. M., Maghraby, M. I. F., & El-Mogy, M. M. (2022). Effect of exogenous postharvest application with thyme and cinnamon oils on quality and storability of cherry tomato. International Journal of Health Sciences 6(S8): 4582–4594. https://doi.org/10.53730/ijhs.v6nS8.13245.
    16. Erfani-Moghadam, J., & Mohammadi, O. (2021). Effect of ascorbic acid and essential oil of thymbra spicata on shelf life and quality maintenance of strawberry. Journal of Crop Production and Processing 11(2): 93-108. (In Persian with English abstract)
    17. Esna-Ashari, M., & Zokaee Khosroshahi, M.R. (2009). Post-harvest physiology and technology. First Edition, Bu-Ali Sina University press. 298 p. (In Persian)
    18. Falguera, V., Quintero, J.P., Jiménez, A., Muñoz, J.A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology22(6): 292-303. https://doi.org/10.1016/j.tifs.2011.02.004.
    19. Ghafouri, M., Soleimani, A., Rabiei, V., & Hemmati, R. (2016). The effect of foliar application after harvesting thyme essential oil on shelf life and quality of pomegranate fruit (Tarom red skin cultivar). Journal of Horticultural Science 29(4): 547-555. (In Persian with English abstract)
    20. Golestani, A., & Rastegar, S. (2017). Effect of rosemary and artemisia essential oil on decay control and quality characters of mango fruit during storage. The Plant Production (Scientific Journal of Agriculture) 40(2): 53-62. (In Persian with English abstract)
    21. Han, C., Zhao, Y., Leonard, S.W., & Traber, M.G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology33(1): 67-78. https://doi.org/10.1016/j.postharvbio.2004.01.008.
    22. Hernandez-Munoz, P., Almenar, E., Del Valle, V., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage. Food Chemistry110(2): 428-435. https://doi.org/10.1016/j.foodchem.2008.02.020.
    23. Jannati, M., Abdossi, V., & Mashhadi Akbar Boujar, M. (2014). Effect of calcium chloride and thyme essential oils application on some postharvest characteristics of strawberry fruit cv. Selva. Modern Science of Sustainable Agriculture Journal 2(2): 25-32. (In Persian with English abstract)
    24. Jin, P., Wang, S.Y., Gao, H., Chen, H., Zheng, Y., & Wang, C.Y. (2012). Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chemistry132(1): 399-405. https://doi.org/10.1016/j.foodchem.2011.11.011.
    25. Karthikeyan, M., Radhika, K., Mathiyazhagan, S., Bhaskaran, R., Samiyappan, R., & Velazhahan, R. (2006). Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera) roots treated with biocontrol agents. Brazilian Journal of Plant Physiology18: 367-377. https://doi.org/10.1590/S1677-04202006000300003.
    26. Lee, S.K., & Kader, A.A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology 20: 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2.
    27. Lounds-Singlton, A.J. (2003). Influence of thermal postharvest stress on mango (Mangifera indica) polyphenolics during ripening. University of Florida, U.S.A. 68 P.
    28. Mohammadi, S., Aroiee, H., Tehranifar, A., & Jahanbakhsh, V. (2012). Application of essential oils in control postharvest decay of strawberry fruit caused by Bottrytis cinerea Postharvest Physiology and Technology of Horticultural Crops 1(2): 55-73. (In Persian with English abstract)
    29. Mozafari, A.A., Rahimi, R., & Abdousi, V. (2017). Effects of Echinophora platyloba essential oil on quantitative and qualitative characteristics of two varieties of strawberries during shelf-life. Journal of Food Research 27(4): 87-102. (In Persian with English abstract)
    30. Nikkhah, M., Habibi Najafi, M.B., Hashemi, M., & Farhoosh, R. (2019). Antifungal activity and synergistic effects of thyme, cinnamon, rosemary and marjoram essential oils in combination, against apple rot fungi. Journal of Food Research 29(1): 43-54. (In Persian with English abstract)
    31. Njombolwana, N.S., Erasmus, A., Van Zyl, J.G., du Plooy, W., Cronje, P.J., & Fourie, P.H. (2013). Effects of citrus wax coating and brush type on imazalil residue loading, green mould control and fruit quality retention of sweet oranges. Postharvest Biology and Technology86: 362-371. https://doi.org/10.1016/j.postharvbio.2013.07.017.
    32. Norouzi Faz, F., Mirdehghan, S.H., Karimi, H.R., & Alaei, H. (2016). Effect of thymol and menthol essential oils combined with packaging with celofan on the maintenance of postharvest quality of strawberry cv. Parus. Iranian Journal of Horticultural Science 47(1): 81-91. (In Persian with English abstract)
    33. Parvizi, V., Shirzad, H., Alirezalu, A., & Rahmanzade Ishkeh, S. (2020). Effect of chitosan nano-emulsion and fennel essential oil on antioxidant activity and biochemical contents of black mulberry (Morus nigra). Pomology Research Scientific Journal 5(1): 1-15. (In Persian with English abstract)
    34. Pizzocaro, F., Torreggiani, D., & Gilardi, G. (1993). Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. Journal of Food Processing and Preservation17(1): 21-30. https://doi.org/10.1111/j.1745-4549.1993.tb00223.x.
    35. Rabbani Nasab, H., Mousavi, S.A., & Heidarzadeh, N. (2012). Study of antifungal effects of some medicinal plants effect on suupression of growth of post harvest disease fungal agent of grape in north Khorassan. Postharvest Physiology and Technology of Horticultural Crops 1(3): 91-106. (In Persian with English abstract)
    36. Rahemi, M. (2011). Postharvest: an introduction to the physiology and handing of fruit, vegetables and ornamentals. Fifth edition, Shiraz university press, 447 p. (In Persian).
    37. Randhir, R., Vattem, D.A., & Shetty, K. (2006). Antioxidant enzyme response studies in H2O2‐stressed procine muscle tissue folloeing treatment with fava bean sprout extract and L‐Journal of Food Biochemistry 30(6): 671-698. https://doi.org/10.1111/j.1745-4514.2006.00090.x.
    38. Rusková, M., Opálková Šišková, A., Mosnáčková, K., Gago, C., Guerreiro, A., Bučková, M., Puškárová, A., Pangallo, D., & Antunes, M.D. (2023). Biodegradable active packaging enriched with essential oils for enhancing the shelf life of strawberries. Antioxidants12(3): 755. https://doi.org/10.3390/antiox12030755.
    39. Sayyari, M., Shabanloo, M., & Azizi, A. (2019). Impact of hexanal, pelargonium. essential oil-cucurbita pepo oil and enhanced freshness formulation (EFF) on storage life of grape cv. Bidaneh sefid. Crops Improvement 20(4): 889-901. (In Persian with English abstract).
    40. Tzortzakis, N.G. (2007). Maintaining postharvest quality of fresh produce with volatile compounds. Innovative Food Science and Emerging Technologies8(1): 111-116. https://doi.org/10.1016/j.ifset.2006.08.001.
    41. USDA, N. (2020). The Plants Database. Greensboro: National plant data team. http://plants.usda.gov/.
    42. Veltman, R., & Van Schaik, A. (1997). Membrane demage in fruits perhaps the explanation of hollow core and flesh browning. Fruitteelt 87: 12-13.
    43. Wafaa, A.A., Sahar, M.A., & Kamel, O.T. (2014). Using safe alternatives for controlling postharvest decay, maintaining quality of crimson seedless grape. World Applied Sciemces Journal 31(7): 1345- 1357. https://doi.org/10.5829/idosi.wasj.2014.31.07.14464.
    44. Wagner, G.J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology64(1): 88-93. https://doi.org/10.1104/pp.64.1.88.

     

CAPTCHA Image