نوع مقاله : مقالات پژوهشی
نویسندگان
1 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، شهرکرد، ایران
2 پژوهشکده میوه های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
چکیده
این پژوهش بهمنظور بررسی خصوصیات رویشی، کمّی و کیفی خشکمیوه و مغز در 36 رقم و ژنوتیپ امیدبخش بادام (Prunus dulcis L) انجام شد. ارقام و ژنوتیپهای امیدبخش در یک شرایط محیطی یکسان در قالب طرح بلوکهای کامل تصادفی در ایستگاه تحقیقات بادام در منطقه سامان وابسته به مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری روی پایه رویشی 15GN در سال 1397 پیوند و در بهار، تابستان و پاییز 1402 از نظر صفات مهم رویشی، فنولوژیکی، کمّی و کیفی خشکمیوه و مغز ارزیابی و مقایسه شدند. نتایج تجزیه واریانس نشان داد که صفات ارتفاع درخت، عرض تاجپوشش درخت ، قطر پایه و پیوندک، طول و قطر شاخه و نسبت ارتفاع به طول تاجپوشش درخت در ارقام و ژنوتیپهای مورد بررسی معنیدار بود. نتایج نشان داد که ارقام و ژنوتیپهای مورد بررسی از نظر کلیه صفات خشکمیوه و مغز تفاوت معنیداری داشتند که نشاندهنده وجود تنوع بین ارقام و ژنوتیپهای مورد بررسی است. براساس نتایج مقایسه میانگین صفات رویشی، بیشترین ارتفاع در ژنوتیپهای 4GA، 3GA و 35GA، بیشترین عرض تاجپوشش درخت در ژنوتیپهای 5GA، 17GA، 3GA، 20GA، 15GA و 5GA و بیشترین قطر پایه و پیوندک و بیشترین طول و قطر شاخه یکساله در ژنوتیپ 18GA مشاهده شد. بیشترین عملکرد در ژنوتیپهای 20GA، 16GA و 26GA مشاهده شد. براساس نتایج بهدست آمده، ارقام و ژنوتیپهای 5GA، 24GA، 12GA، 9GA و 1GA از نظر صفات خشکمیوه و مغز برتری نسبی نشان دادند بهطوریکه ژنوتیپ 24GA نسبتاً دیرگل، ژنوتیپهای 1GA و 5GA خیلی دیرگل بودند و گلدهی ارقام و ژنوتیپهای 9GA، 12GA و 24GA روی اسپور و 5GA و 1GA مختلط بود. قطر خشکمیوه همبستگی مثبت و معنیداری با وزن خشکمیوه و طول و قطر مغز (7/0=r) نشان داد. نتایج این پژوهش نشان داد که ژنوتیپ 35GA پیوند شده روی پایه 15GN بیشترین طول، عرض و قطر خشکمیوه، بیشترین وزن خشک و وزن مغز، رنگ مغز روشن، مغز بدون چروکیدگی، بیشترین درصد مغز و بیشترین نسبت وزن مغز به وزن خشکمیوه را دارا بود.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Evaluation of Important Vegetative, Phenological and Pomological Characteristics of 36 Promising Almond (Prunus dulcis L.) Genotypes on GN15 Vegetative Rootstock
نویسندگان [English]
- S.A. Mousavi 1
- A. Vatankhah 1
- A. Imani 2
1 Horticulture Crops Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension organization (AREEO), Shahrekord, Iran
2 Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]
Introduction
Almond (Prunus dulcis L.) is one of the valuable nut trees that is cultivated in many temperate regions and Mediterranean climatic conditions for domestic consumption and export. Almond belongs to the genus Prunus, from the Rosaceae family. Identifying and introducing genotypes and cultivars of late bloom is one of the most important goals of almond breeding programs. The correct choice of almond rootstock causes better management of the garden, compatibility with all types of soil and resistance to nematodes. Peach × almond hybrid has been the most widely used rootstock in both dry and irrigated conditions in the past years. Creating an orchard by selecting grafted genotypes on suitable rootstock for sustainable cultivation of almonds is particularly important. Cultivation of superior genotypes grafted on fruit trees has an effect on pomological characteristics, yield and quality of nuts. The requirement for the introduction and production of superior cultivars is an accurate selection between cultivars, which is possible through the identification of cultivars and their diversity. The purpose of this research is to investigate and evaluate the most important vegetative, phenological, quantitative, and qualitative characteristics of nuts and kernels in 36 promising cultivars and genotypes grafted onto GN15 rootstock, with the goal of identifying and introducing superior cultivars.
Materials and Methods
In this research, 36 promising almond cultivars and genotypes on GN15 rootstock were investigated in garden conditions in terms of various vegetative traits, nut and kernel characteristics in order to obtain suitable commercial cultivars. This research was conducted at the Badam research station in Saman region affiliated to the Center for Research and Education of Agriculture and Natural Resources of Chaharmahal and Bakhtiari province as a randomized complete block design with three replications. The cultivars and genotypes studied are presented in Table 1. Vegetative traits of tree height, canopy length, canopy width, and branch length were measured by meter in the garden, and rootstock diameter, scion diameter, and branch diameter were measured in the garden with calipers. In order to measure the nut and kernels, 100 fruits were harvested from each of the studied cultivars and genotypes at the time of fruit ripening, and their green shell was separated and dried. Measurement of traits such as length, width, diameter of nut and kernel was done by digital caliper and weight of nut and kernel was measured by digital scale with accuracy of 0.01. Coding of some traits was done based on almond descriptor (Gülcan, 1985) with some changes. The data obtained from the experiment were analyzed using SAS software (version 3.1.9). To compare the means, Duncan's multiple range test was used at the 5% probability level.
Table 1- Promising cultivars and genotypes examined in this study (based on the sent label of the scion)
Cultivar/genotype
Cultivar/genotype code
Cultivar/genotype
Cultivar/genotype code
TS-16
GA1
2-29 (D7)
GA 19
D
GA 2
100-1-1
GA 20
TS-21
GA 3
2-0-4
GA 21
TS-14
GA 4
3-1-4
GA 22
Aviz
GA 5
TS-18
GA 23
A8
GA 6
D2
GA 24
B8
GA 7
TS-30
GA 25
100-1-8-1
GA8
1306 (Tabriz genotype)
GA 26
2-3-2
GA 9
AH2 (Tabriz genotype)
GA 27
TS-11
GA 10
108 (Tabriz genotype)
GA28
( 1/16) 1-16
GA 11
Yalda
GA29
3-1-15
GA 12
Saba
GA 30
13-40
GA 13
Shamshiri (Shahrekord)
GA 31
TS1
GA 14
AY (Shahrekord)
GA 32
8-35
GA 15
Mamaei
GA 33
85
GA 16
AN2 (Shahrekord)
GA 34
35
GA 17
AN4 (Shahrekord)
GA 35
B6
GA 18
AN5 (Shahrekord)
GA 36
Results and Discussion
According to the results of analysis of variance (ANOVA), there was a statistically significant difference at the level of 1% between the attributes of tree height, canopy width, rootstock and scion diameter, branch length and diameter, and the ratio of tree height to canopy length. (P<0.01). The results of variance analysis show that there is a significant difference between the investigated nut and kernel traits in promising cultivars and genotypes grafted on GN (Table 5). These differences show the diversity in the investigated traits and it is possible to choose cultivars for different values of the same trait. Based on the average comparison results of the vegetative traits, the highest height in genotypes GA4, GA3, GA35, The highest canopy width was observed in genotypes GA5, GA17, GA3, and GA20, GA15, GA5, the highest diameter of rootstock and scion, and the highest length and diameter of one-year branches were observed in genotype GA18. The results of the comparison of the average nut and kernel characteristics show that there is a significant difference in the cultivars and genotypes investigated in this research. The results of the comparison of the average nut and kernel characteristics show that there is a significant difference in the cultivars and genotypes investigated in this research. Based on the obtained results, cultivars and genotypes of GA5, GA24, GA12, GA9 and GA1 showed relative superiority in terms of nut and kernel traits. The results of this research showed that the GA35 genotype grafted on the GN15 rootstock had the highest length, width and diameter of the nut, and the highest weight of nut and kernel. The kernel color light, the without shrinking the kernel and the highest percentage of kernel and the highest ratio of kernel weight to nut weight.
Conclusions
The results of this research showed that the examination of vegetative traits, nuts and kernels in the studied cultivars and genotypes could show the diversity between cultivars and genotypes. The results showed that the investigated cultivars and genotypes have significant differences in terms of all nut and kernel traits, which indicates the existence of diversity between the investigated cultivars and genotypes. This indicates that these cultivars and genotypes can be considered a valuable source of germplasm for breeding programs. Cultivars and genotypes with a higher kernel percentage had thinner shells, more patterns on the skin, and light to medium kernel color. Based on the results, the cultivars and genotypes GA5, GA24, GA12, GA9, and GA1 demonstrated relative superiority in terms of nut and kernel traits. The research also showed that the GA35 genotype grafted onto GN15 rootstock had the greatest nut length, width, and diameter, as well as the highest nut and kernel weight. Additionally, GA35 had light kernel color, no kernel shrinkage, the highest kernel percentage, and the highest kernel-to-nut weight ratio.
کلیدواژهها [English]
- Kernel
- Nuts
- Superior genotype
- Vegetative rootstock
- Vegetative traits
©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Arteaga, N., & Sociasi Company, R. (2001). Heritability of fruit and kernel traits in almond. III International Symposium on Pistachios and Almonds 591, Zaragoza, Spain.
- Asgari, K., & Khadivi, A. (2021). Morphological and pomological characterizations of almond (Prunus amygdalus) genotypes to choose the late-blooming superiors. Euphytica, 217(3), 42. https://doi.org/10.1007/s10681-021-02777-0
- Ayaz, Z., Zainab, B., Khan, S., Abbasi, A.M., Elshikh, M.S., Munir, A., Al-Ghamdi, A.A., Alajmi, A.H., Alsubaie, Q.D., & Mustafa, A.E.Z.M. (2020). In silico authentication of amygdalin as a potent anticancer compound in the bitter kernels of family Rosaceae. Saudi Journal of Biological Sciences, 27(9), 2444-2451. https://doi.org/10.1016/j.sjbs.2020.06.041
- Babadai, R., Mousavi, S.A., & Mehrdad, J. (2017). Guide to Almond Production. Islamic Azad University Khorasgan Publications, Khorasgan, Iran. (In Persian)
- Barreca, D., Nabavi, S. M., Sureda, A., Rasekhian, M., Raciti, R., Silva, A.S., Annunziata, G., Arnone, A., Tenore, G. C., & Süntar, İ. (2020). Almonds (Prunus dulcis DA webb): A source of nutrients and health-promoting compounds. Nutrients, 12(3), 672. https://doi.org/10.3390/nu12030672
- Beigi, F., & Khadivi, A. (2023). Selection of superior late‐blooming almond (Prunus dulcis [Mill.] DA Webb) genotypes using morphological characterizations. Food Science and Nutrition, 11(7), 3844-3857. https://doi.org/10.1002/fsn3.3370
- Çantal, D. (2022). Effect of different rootstocks on fruit quality and plant nutritient content of almond cvs.Ferragnes and Ferraduel. M.Sc. Thesis, Ege University Graduate School of Applied and Natural Science. p. 56.
- Chalak, L., Chehade, A., & Kadri, A. (2007). Morphological characterization of cultivated almonds in Lebanon. Fruits, 62(3), 177-186. https://doi.org/10.1051/fruits:2007013
- De Giorgio, D., Leo, L., Zacheo, G., & Lamascese, N. (2007). Evaluation of 52 almond (Prunus amygdalus Batsch) cultivars from the Apulia region in Southern Italy. The Journal of Horticultural Science and Biotechnology, 82(4), 541-546. https://doi.org/10.1080/14620316.2007.11512271
- De Giorgio, D., & Polignano, G. (2001). Evaluating the biodiversity of almond cultivars from germplasm collection field in Southern Italy. Sustaining the Global Farm, 56, 305-311.
- Dorostkar, M., Mostafavi, M., Shariat-Panahi, M.S., Hasani, D., Khalighi, A., & Nikzad, A. (2011). Self-compatibility and suitable planting combination of commercial cultivars of almond. Seed and Plant Improvement Journal, 27(4), 449-457. (In Persian with English abstract). https://doi.org/10.22092/SPIJ.2017.111076
- (2021). FAOSTAT database results. http://Fao.stat.org/stat.org/stat/almond
- Gouta, H., Ksia, E., Ayachi, M., & Martinez-Gomez, P. (2019). Agronomical evaluation of local Tunisian almond cultivars and their breeding prospects. European Journal of Horticultural Science, 84(2), 73-84. https://doi.org/10.17660/eJHS.2019/84.2.3
- Gradziel, T.M., & Martínez-Gómez, P. (2002). Shell seal breakdown in almond is associated with the site of secondary ovule abortion. Journal of the American Society for Horticultural Science, 127(1), 69-74.
- Gülcan, R. (1985). Descriptors list for Almond (Prunus amygdalus; Revised). International Board for Plant Genetic Resources (IBPGR).
- Heidari, P., Sanaeizadeh, S., Rezaei, M., & Khadivi, A. (2022). Phenotypical and pomological characterization of non-irrigated almond (Prunus dulcis) trees to select superior genotypes. Erwerbs-Obstbau, 64(3), 333-343.
- Imani, A., Amani, G., Shamili, M., Mousavi, A., Hamed, R., Rasouli, M., & José Martínez-García, P. (2021). Diversity and broad sense heritability of phenotypic characteristic in almond cultivars and genotypes. International Journal of Horticultural Science and Technology, 8(3), 281-289. https://doi.org/10.22059/ijhst.2020.284452.303
- Imani, A., Ghoreyshi, H., Mohamadi Torkashvand, A., Azizi-Nazhad, R., & Ebrahimi, R. (2022). Evaluation of morphological and pomological characteristics and yield of almond cultivars and promising genotypes. Iranian Journal of Horticultural Science and Technology, 23(2), 277-290. (In Persian with English abstract). https://doi.org/20.1001.1.16807154.1401.23.2.7.7
- Imani, A., Mousavi, A., Biat, S., Rasouli, M., Tavakoli, R., & Piri, S. (2011). Genetic diversity for late frost spring resistance in almond. Acta Horticulturae, 912, 371-375. https://doi.org/10.17660/ActaHortic.2011.912.54
- Janick, J., & Moore, J.N. (1996). Fruit Breeding, Tree and Tropical Fruits (Vol. 1). John Wiley and Sons. 632.
- Kester, D.E., & Gradziel, T.M. (1996). Almonds In J. Janick & J. N. Moore (Eds.), Fruit Breeding, Volume 3: Nuts (pp. 1-97). John Wiley and Sons, Inc.
- Khadivi-Khub, A., & Etemadi-Khah, A. (2015). Phenotypic diversity and relationships between morphological traits in selected almond (Prunus amygdalus) germplasm. Agroforestry Systems, 89, 205-216. https://doi.org/10.1007/s10457-014-9754-x
- Khadivi-Khub, A., & Osati, E. (2016). Evaluation of self-compatiblity, flowering time and morphological variables in some almond genotypes to choose superiors. Plant Production Technology, 8(1), 103-124. (In Persian with English abstract). https://doi.org/10.22084/ppt.2016.1764
- Khadivi, A., Mirheidari, F., & Moradi, Y. (2022). Prunus arabica (Olivier) Meikle, an important genetic resource for breeding of almond: Morphological and pomological characterizations. Genetic Resources and Crop Evolution, 69(5), 1717-1730. https://doi.org/10.1007/s10722-022-01361-2
- Khojand, S., Zeinalabedini, M., Azizinezhad, R., Imani, A., & Ghaffari, M.R. (2023). Diversity of nut and kernel weight, oil content, and the main fatty acids of some almond cultivars and genotypes. Journal of Nuts, 14(1), 33-44. https://doi.org/10.22034/jon.2022.1945292.1145
- Melhaoui, R., Addi, M., Houmy, N., Abid, M., Mihamou, A., Serghini-Caid, H., Sindic, M., & Elamrani, A. (2019). Pomological characterization of main almond cultivars from the North Eastern Morocco. International Journal of Fruit Science, 19(4), 413-422. https://doi.org/10.1080/15538362.2018.1552232
- Moradi, H., & Mousavi, S.A. (1999). Characteristics of three varieties of local almonds in Chaharmahal and Bakhtiari province. First National Conference on Almond, Shahrekord, Iran. (In Persian)
- Mougiou, N., Maletsika, P., Konstantinidis, A., Grigoriadou, K., Nanos, G., & Argiriou, A. (2023). Morphological and molecular characterization of a new self-compatible almond variety. Agriculture, 13(7). https://doi.org/10.3390/agriculture13071362
- Mousavi, S.A., Ghasemnezhad, M., Tatari, M., & Eskandari, S. (2020). Evaluation of phenotypic diversity of nut and kernel characteristics in some almond cultivars and promising genotypes. Research in Pomology, 5(1), 139-151. (In Persian with English abstract). https://rip.urmia.ac.ir/article_120954.html
- Mousavi, S.A., Moghadam, M.R.F., Zamani, Z., & Eimani, A. (2010). Evaluation of quantitative and qualitative characteristics of some almond cultivars and genotypes. Iranian Journal of Horticultural Science, 41(2), 119–131. (In Persian with English abstract)
- Mousavi, S.A., Tatari, M., Moradi, H., & Hassani, D. (2015). Evaluation of genetic diversity among the superior walnut genotypes based on pomological and phenological traits in Chahar Mahal va Bakhtiari province. Seed and Plant Journal, 31(2), 365-389. (In Persian with English abstract). https://doi.org/10.22092/spij.2017.111264
- Pérez-Sánchez, R., & Morales-Corts, M.R. (2021). Agromorphological characterization and nutritional value of traditional almond cultivars grown in the Central-Western Iberian Peninsula. Agronomy, 11(6), 1238. https://doi.org/10.3390/agronomy11061238
- Ranjbar, A., & Imani, A. (2022). Grafting commercial cultivars of almonds on accurate rootstocks mitigates adverse effects of drought stress. Scientia Horticulturae, 293, 110-725. https://doi.org/10.1016/j.scienta.2021.110725
- Rasouli, M., Fattahi Moghadam, M.R., Zamani, Z., Imani, A., & Ebadi, A. (2012). A study ot the phenotypic diversity of some almond cultivars and genotypes, using morphological traits. Iranian Journal of Horticultural Science, 43(4), 357-370. (In Persian with English abstract). https://doi.org/10.22059/ijhs.2012.29371
- Rasouli, M., Jafari Taeme, A., & Rahmati Joneidabad, M. (2019). Evaluation of genetic variation of some almond genotypes using morphological markers. Pomology Research, 4(1), 106-120. (In Persian with English abstract)
- Rubio-Cabetas, J.M. (2016). Almond Rootstocks: Overview. In O. Kodad, A. López-Francos, M. Rovira, & R. Socias i Company (Eds.), XVI GREMPA Meeting on Almonds and Pistachios (Vol. 119, pp. 133-143). Zaragoza: CIHEAM. http://om.ciheam.org/om/pdf/a119/00007379.pdf
- Safavi, E., Yadegari, M., Mousavi, S.A., & Haghighati, B. (2023). Investigation the different levels of drought stress on almond cultivars. Journal of Horticultural Science, 37(2), 523-540. (In Persian with English abstract). https://doi.org/10.22067/jhs.2022.77478.1184
- Sorkheh, K., Shiran, B., Kiani, S., Amirbakhtiar, N., Mousavi, S., Rouhi, V., Mohammady, D.S., Gradziel, T.M., Malysheva-Otto, L.V., & Martínez-Gómez, P. (2009). Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species. Journal of Forestry Research, 20(3), 183-194. https://doi.org/10.1007/s11676-009-0036-9
- Taiz, L., & Zeiger, E. (2010). Plant Physiology (5th Ed.). Sinauer Associates.
- Vezvaei, A. (1985). Evaluation of quantitative and qualitative traits of almond genotypes in Tehran and Central provinces of Iran in order to select superior cultivars. M.Sc. Thesis, Factually of Agriculture, Tarbiat Modares University, Tehran, Iran. 196.
- Yada, S., Lapsley, K., & Huang, G. (2011). A review of composition studies of cultivated almonds. Macronutrients and Micronutrients, 24(4-5), 469-480.
- Zahedi, S.M., Abdelrahman, M., Hosseini, M.S., Yousefi, R., & Tran, L.S.P. (2020). Physical and biochemical properties of 10 wild almond (Amygdalus scoparia) accessions naturally grown in Iran. Food Bioscience, 37, 100721. https://doi.org/10.1016/j.fbio.2020.100721
- Zinelabidine, L., H’ssaini, H., Ennahli, S., Latrache, H., & Hmid, I. (2015). Phenotypic, morphological diversity and biochemical characterization of 14 almond cultivars from Morocco. Moroccan Journal of Chemistry, 3(3), 3-3 2394-2406. https://doi.org/10.48317/IMIST.PRSM/morjchem-v3i3.2589
ارسال نظر در مورد این مقاله