با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه کشاورزی، دانشکده جنگل و صنایع غذایی، دانشگاه تورینو، تورینو، ایتالیا

چکیده

گوجی‌بری (Lycium barbarum cv. GB1) می­تواند منبع آنتی اکسیدان­های طبیعی برای تولید غذای انسان باشد. به‌منظور بررسی اثر تیمارهای ال- فنیل آلانین، سلنیوم و نیتروکسین، آزمایشی در قالب طرح بلوک­های کامل تصادفی در سه تکرار انجام شد که فاکتورهای آن شامل اسید آمینه L- فنیل آلانین (5/0، 1 و 5/1 میلی­مولار) بود. سدیم سلنات (25/0، 5/0 و 1 میلی­گرم در لیتر) و کود بیولوژیک نیتروکسین (166، 333 و 500 میکرولیتر در لیتر) در سه سطح و آب مقطر به‌عنوان شاهد استفاده شد. در پایان آزمایش، صفاتی مانند مواد جامد محلول، اسید قابل تیتراسیون، محتوای فنول کل، فلاونوئید و فعالیت آنزیم فنیل‌آلانین آمونیالیاز مورد بررسی قرار گرفتند. نتایج نشان داد که تیمارهای مورد استفاده در این آزمایش تأثیر معنی‌داری بر ویژگی‌های فیزیولوژیکی و شیمیایی گیاه گوجی بری داشتند. نتایج نشان داد که بیشترین میزان اسید قابل تیتراسیون (896/0 درصد) در نمونه­های تیمارشده با نیتروکسین در غلظت 333 میکرولیتر به‌دست آمد. بیشترین میزان (56/18 میلی­گرم در گرم) این شاخص در میوه­های تیمارشده با فنیل­آلانین در غلظت 5/1 میلی­مولار به‌دست آمد. بیشترین مقدار این شاخص در میوه­های تحت تیمار فنیل­آلانین در غلظت 1میلی­مولار به‌دست آمد که این شاخص 98/61 درصد بیشتر از میزان فلاونوئید ثبت‌شده در میوه­های گوجی­بری در شرایط شاهد به­دست آمد. همچنین نتایج نشان داد که با وجود کاهش فعالیت آنزیم پلی­فنول­اکسیداز طی افزایش غلظت سلنیوم، فعالیت این آنزیم طی شرایط استفاده از سلنیوم در غلظت 1 میلی­گرم در لیتر 66/13 درصد بیشتر از فعالیت آنزیم پلی­فنل­اکسیداز در شرایط شاهد بود. با توجه به نتایج حاصل از پژوهش حاضر، استفاده از نیتروکسین در غلظت 333 میکرولیتر و فنیل آلانین در غلظت 5/1 میلی­مولار برای افزایش عملکرد و خصوصیات فیزیکوشیمیایی، در جهت ارتقاء کشاورزی ارگانیک و پایدار می­تواند قابل توصیه باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Amino Acid L-Phenylalanine, Selenium and Nitroxin Biological Fertilizer on the Physicochemical Properties of Goji Berries (Lycium barbarum cv. GB1)

نویسندگان [English]

  • S. Fatahi Siahkamary 1
  • V. Rabiei 1
  • M. Shoor 2
  • S. Nicola 3

1 Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran

3 Department of Agricultural, Faculty of Forest and Food Sciences, University of Torino, Italy

چکیده [English]

Introduction
The Lycium genus of the Solanaceae family has excellent nutritional and medicinal value. Two species of Lycium barbarum L. and Lycium chinense Mill. It is often called wolfberry or goji berry. The use of amino acids for horticultural crops is common worldwide, and many chemicals used as biostimulants are mixtures of amino acids. The effect of amino acids on plants seems to depend on the type of amino acid supplied and the type of plant. Selenium (Se) is an important component of selenoproteins and seleno-amino acids. Therefore, it has played many roles in the growth and function of living cells and important biological functions in animals and humans. Also Se is very similar in properties to sulfur and can act as S in biochemical systems. Biological fertilizers are fertile materials that contain one or more beneficial soil organisms within a suitable carrier. Overall, these fertilizers contain different types of microorganisms that can convert nutrients from unavailable form to available form through a biological process. The application of supernitroxin fertilizer by stimulating the synthesis of plant hormones increased the growth indicators of sesame varieties.
 
Materials and Methods
This experiment was conducted at the Research farm University of Mashhad, during 2021 and 2022 years. In early May, goji berry seedlings were planted in the field to check the effect of the L-phenylalanine (Phe), sodium selenate (Se), and nitroxine were applied before harvesting and foliar spraying on the goji berry plant during the growth stages. To conduct experiment, two-year-old seedlings of Goji berry cultivar GB1 were obtained from Mashhad Seedling Company located in Razavi Khorasan province, and after the seedlings were transferred to ground and established, initial foliar spraying was done. In order to evaluate the effect of L-phenylalanine, selenium, and nitroxine treatments, experiment were conducted as a randomized complete block design in 5 replications which factors include the amino acid L-phenylalanine (Phe: 0.5, 1, and 1.5 mM), sodium selenate (Se: 0.25, 0.5, and 1 mg.L-1) and nitroxin biological fertilizer (170, 330, and 500 μl.L-1) at three levels and distilled water was applied as a control. One pot was considered for each repetition and a total of 10 pots were considered along with the control. Plants were sprayed every 15 days after establishment. After the three stages of foliar spraying, the content of phenol and flavonoid content and antioxidant activity, PAL and anthocyanin were measured.
 
Results and Discussion
The results showed that the treatments used in this experiment had a significant effect on the physiological and chemical characteristics of the goji berry plant. The results showed that the highest amount of titratable acidity (0.896%) was obtained in samples treated with nitroxine at a concentration of 333 microliters. The highest amount (18.56 mg.g-1) of this index was obtained in fruits treated with phenylalanine at a concentration of 1.5 mM. The highest amount of this index was obtained in the fruits treated with phenylalanine at a concentration of 1 mM, which was 61.98% higher than the amount of flavonoid recorded in goji berries under control conditions. Also, the results showed that despite the decrease in the activity of PAL enzyme during the increase of selenium concentration, the activity of this enzyme was 13.66% higher than the activity of PAL enzyme under the condition of using selenium at a concentration of 1 mg/liter. The increase in the functioning of the antioxidant system is determined by the total antioxidant, which is controlled by the content of low-molecular components and the activity of antioxidant enzymes. Compounds such as ascorbic acid, glutathione, tocopherol, carotenoids, anthocyanins, endogenous metal chelators, TPC, TFC and alkaloids are low molecular weight antioxidants. Also nitroxin, supernitroplus, phosphate and mycorrhizal fertilizers. Nitroxin binds N in the atmosphere and balances the absorption of nutrient element in the plant. Nitroxin is responsible for the secretion of amino acids, antibiotics, hydrogen cyanide and siderophores, which promote the growth and development of plant roots and shoots, protect the roots from pathogens, thereby increasing yield. A sufficient supply of phenylalanine through the use of exogenous Phe or endogenous Phe provided by the shikimic acid pathway may be required to stimulate the activity of the phenylpropanoid pathway, as shown by the high PAL activity responsible for the accumulation of phenols, flavocyanins and anthocyanins. This leads to the need for ROS accumulation. Anthocyanins are groups of flavonoids found in vacuoles epidermal and mesophyll cells of plants. Anthocyanins can protect chlorophyll from light oxidation and, compared to other components, is a better indicator of plant oxidative stress caused by external factors that accumulate in plants.
 
Conclusions
The present study was conducted with the aim of studying the effect of L-phenylalanine, selenium and nitroxin biofertilizer on improving the vegetative growth, yield and secondary metabolites of gojiberry during two cropping years. To conduct the experiment, two-year-old seedlings of Goji berry variety GB1 were obtained from Mashhad Seedling Company located in Razavi Khorasan province. The results demonstrated that the application of L-phenylalanine amino acid, selenium, and nitroxin biofertilizer significantly influenced the traits studied during the experiment. Specifically, nitroxin at a concentration of 166 microliters increased the amount of soluble solids, while at a concentration of 333 microliters, it elevated titratable acidity compared to the control samples. The highest PAL enzyme activity was observed with phenylalanine at a concentration of 1.5 mM, showing a 52.17% increase compared to the PAL enzyme activity under control conditions.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Phenol content Tiratable acidity
  • Total soluble solids

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. on some of the morphological and nutritional properties of globe artichoke. Iran Agricultural Research, 39(2), 47-56. (in Persian with English abstract). https://doi.org/10.22099/iar.2020.35209.1372
  2. Arya, S.P.N. (2000). Spectrophotometric methods for the determination of vitamin C. Analytica Chimical Acta, 417, 1-14.
  3. Ayala-Zavala, J.F., Wang, S.Y., Wang, C.Y., & González-Aguilar, G.A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Science and Technology, 37(7), 687-695. https://doi.org/10.1016/j.lwt.2004.03.002
  4. Benlloch, M., Muriach, M., Castellano, G., Sancho-Pelluz, F.J., González-García, E., Flores-Bellver, M., & Romero, F.J. (2015). Role of Lycium barbarum extracts in retinal diseases. In Lycium Barbarum and Human Health. 153-178. Springer, Dordrecht.
  5. Bora, P., Ragaee, S., & Abdel-Aal, E.S.M. (2019). Effect of incorporation of goji berry by-product on biochemical, physical and sensory properties of selected bakery products. Lebensmittel-Wissenschaft and Technologie, 112, 108225. https://doi.org/10.1016/j.lwt.2019.05.123
  6. Chassy, A.W., Douglas, O.A., Laurie, F., & Waterhouse, A.L. (2012). Tracing phenolic biosynthesis in Vitis vinifera via in situ C-13 labeling and liquid chromatography-diode-array detector-mass spectrometer/mass spectrometer detection. Analytica Chimica Acta, 747, 51-57. https://doi.org/1016/j.aca.2012.08.012
  7. Dahham, A.A. (2021). The effect of nitroxin application and drought stress on growth and yield of two Persian and Iraqi celery populations. In IOP Conference Series: Earth and Environmental Science, 735, 012046. https://doi.org/1088/1755-1315/735/1/012046
  8. Donno, D., Beccaro, G.L., Mellano, M.G., Cerutti, A.K., & Bounous, G. (2015). Goji berry fruit (Lycium): Antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods,18, 1070-1085. https://doi.org/10.1016/j.jff.2014.05.020
  9. Fahramand, M., & Mobasser, H. (2013). Effect of biological fertilizer on maize. International Journal of Agriculture and Crop Sciences6(12), 784.
  10. Fatchurrahman, D., Amodio, M.L., De Chiara, M.L.V., Mastrandrea, L., & Colelli, G. (2022). Characterization and postharvest behavior of goji berry (Lycium barbarum) during ripening. Postharvest Biology and Technology191, 111975. https://doi.org/10.1016/j.postharvbio.2022.111975
  11. FAO. (2023) FAO STAT: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/ (accessed on 3 January 2023).
  12. Feiziasl, V., Jafarzadeh, J., Pala, M., & Mosavi, S.B. (2009). Determination of critical levels of micronutrients by plant response column order procedure for dryland wheat ( aestivum L.) in Northwest of Iran. International Journal of Soil Science, 4(1), 14-26. https://doi.org/10.3923/ijss.2009.14.26
  13. Fukuda, T., Yokoyama, J., & Ohashi, H. (2001). Phylogeny and biogeography of the genus Lycium (Solanaceae): inferences from chloroplast DNA sequences. Molecular Phylogenetics and Evolution, 19(2), 246-258. https://doi.org/10.1006/mpev.2001.0921
  14. Gao, Y., Wei, Y., Wang, Y., Gao, F., & Chen, Z. (2017). Lycium barbarum: a traditional Chinese herb and a promising anti-aging agent. Aging and disease8(6), 778. https://doi.org/10.14336/AD.2017.0725
  15. Ghasemzadeh-Mohammadi, V., Mohammadi, A., Hashemi, M., Khaksar, R., & Haratian, P. (2012). Microwave-assisted extraction and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish. Journal of Chromatography1237, 30-36.‏ https://doi.org/10.1016/j.chroma.2012.02.078
  16. Hajiboland, R., Rahmat, S., Aliasgharzad, N., & Hartikainen, H. (2015). Selenium-induced enhancement in carbohydrate metabolism in nodulated alfalfa (Medicago sativa) as related to the glutathione redox state. Soil Science and Plant Nutrition, 61(4), 676-687. https://doi.org/10.1080/00380768.2015.1032181
  17. Heydarnazhad, R., Ghahremani, Z., Barzegar, T., & Rabiei, V. (2019). The effects of harvesting stage and chitosan coating on quality and shelf-life of Physalis angulataIranian Journal of Horticultural Science, 50(1), 173-186. (In Persian with English abstract). (in Persian with English abstract). https://doi.org/10.22059/ijhs.2018.250863.1389
  18. Jalil Sheshbahreh, M., Movahhedi Dehnavi, M., Salehi, A., & Bahreininejad, B. (2022). Nitroxin improves yield and phenol compound of purple coneflower (Echinaceae purpurea) root under different irrigation regimes. Journal of Organic Farming of Medicinal Plants, 1(1), 18.
  19. Kafkaletou, M., Christopoulos, M.V., Tsaniklidis, G., Papadakis, I., Ioannou, D., Tzoutzoukou, C., & Tsantili, E. (2018). Nutritional value and consumer-perceived quality of fresh goji berries (Lycium barbarum and L. chinense L.) from plants cultivated in Southern Europe. Fruits73(1), 5-12. | https://doi.org/10.17660/th2018/73.1.1|©ISHS2018
  20. Kader, M.A., Mian, M.H., & Hoque, M.S. (2002). Effects of Azotobacter inoculant on the yield and nitrogen uptake by wheat. Journal of Biological Sciences, 2(4), 259-261.
  21. Kaijv, M., Sheng, L., & Chao, C. (2006). Antioxidation of flavonoids of green rhizome. Food Science, 27, 110-115.
  22. Konarska, A. (2018). Microstructural and histochemical characteristics of Lycium barbarum fruits used in folk herbal medicine and as functional food. Protoplasma255(6), 1839-1854.
  23. Kovacs, K., Banoczi, G., Varga, A., Szabo, I., Holczinger, A., Hornyanszky, G., Zagyva, I., Paizs, C., Vertessy, B.G., & Poppe, L. (2014). Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilusPLoS One, 9(1), p.e85943. https://doi.org/10.1371/journal.pone.0085943
  24. Krizek, D.T., Britz, S.J., & Mirecki, R.M., (1998). Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth cv. New Leaf Fire lettuce. Physiologia Plantarum, 103, 17. https://doi.org/10.1034/j.1399-3054.1998.1030101.x
  25. Kubota, N., Yakushiji, H., Nishiyama, N., Mimura, H., & Shimamura, K. (2001). Phenolic contents and L-phenylalanine ammonia-lyase activity in peach fruit. Horticultural Science, 70, 151-156.
  26. Kulczyński, B., & Gramza-Michałowska, A. (2016). Goji berry (Lycium barbarum): Composition and health effects–a review. Polish Journal of Food and Nutrition Sciences66(2), 67-75. https://doi.org/10.1515/pjfns-2015-0040
  27. Luo, Q., Cai, Y., Yan, J., Sun, M., & Corke, H. (2004). Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarumLife Sciences76(2), 137-149. https://doi.org/10.1016/j.lfs.2004.04.056
  28. Merajipoor, M., Movahhedi Dehnavi, M., Salehi, A., & Yadavi, A. (2020). Physiological responses of black cumin to chemical and biological nitrogen fertilizers under different irrigation regimes. Journal of Agricultural Science and Technology, 22(4), 1023-1037.
  29. Mocan, A., Moldovan, C., Zengin, G., Bender, O., Locatelli, M., Simirgiotis, M., Atalay, A., Vodnar, D.C., Rohn, S., & Crișan, G. (2018). UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian goji (Lycium barbarum) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food and Chemical Toxicology115, 414-424. https://doi.org/10.1016/j.fct.2018.01.054
  30. Moghimi, F., & Yousefi Rad, M. (2013). The effects of nitroxin (Azotobacter) usage on yield and yield components of safflower (cv.Goldasht) in the presence of EDTA. Journal of Plant Ecophysiology, 5(13), 39-47.
  31. Mohammadpour Vashvaei, R., Ramroudi, M., & Fakheri, B.A. (2017). Effects of drought stress and bio-fertilizer inoculation on quantitative and qualitative characteristics of Marian thistle (Silybum marianum). Journal of Agroecology, 9(1), 31-49. https://doi.org/10.22067/jag.v9i1.32650
  32. Navarro-Alarcon, M., & Cabrera-V.C. (2008). Selenium in food and the human body. A Review Science of the Total Environment, 400, 115–141. https://doi.org/10.1016/j.scitotenv.2008.06.024
  33. Oğuz, I., Oğuz, H.I., Vural, A.A., & Kafkas, N.E. (2022). Goji berry (spp.) cultivation in Turkey. In Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 76(4), 409-416
  34. Owusu-Sckyere, A., Konttuyi, J., Hajiboland, R., Rahmat, S., Aliasgharzad, M., Hartikaninen, H., & Seppanen, M.M. (2013). Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.). Plant and Soil, 373, 541–552.
  35. Pakkish, Z., & Mohammadrezakhani, S. (2021). Quality characteristics and antioxidant activity of the mango (Mangifera indica) fruit under arginine treatment. Journal of Plant Physiology and Breeding, 11(1), 63-74.
  36. Pilon-Smits, E.A. (2019). On the ecology of selenium accumulation in plants. Plants, 8(7), 197.
  37. Portu, J., Gonzalez-Arenzana, L., Hermosín-Gutiérrez, I., Santamaría, P., & GardeCerdan, T. (2015). Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content. Food Chemistry, 180, 55-63. https://doi.org/10.1016/j.foodchem.2015.02.008
  38. Radyuk, M.S., Domanskaya, I.N., Shcherbakov, R.A., & Shalygo, N.V. (2009). Effect of low above-zero temperature on the content of low-molecular antioxidants and activities of antioxidant enzymes in green barley leaves. Russian Journal of Plant Physiology, 56, 175-180.
  39. Sánchez-Moreno, C., Larrauri, J.A., & Saura‐Calixto, F. (1999). Free radical scavenging capacity of selected red, rose and white wines. Journal of the Science of Food and Agriculture, 79, 1301-1304. https://doi.org/10.1002/(SICI)1097-0010
  40. Santamaría, P., López, R., Portu, J., González-Arenzana, L., López-Alfaro, I., & Garde-Cerdán, T. (2015). Role of Phenylalanine in Viticulture and Enology. Phenylalanine, Dietary, sources, functions and health effects. Nova Publisher, New York. 49-70.
  41. Shah, T., Bule, M., & Niaz, K. (2019). Goji Berry (Lycium barbarum)-A Superfood. In Nonvitamin and Nonmineral Nutritional Supplements. Academic Press. pp. 257-264. https://doi.org/10.1016/B978-0-12-812491-8.00037-0
  42. Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  43. Turakainen, M., Hartikainen, H., & Seppänen, M.M. (2004). Effects of selenium treatments on potato (Solanum tuberosum) growth and concentrations of soluble sugars and starch. Journal of Agricultural and Food Chemistry52(17), 5378-5382.‏ https://doi.org/10.1021/jf040077x
  44. Tzin, V., & Galili, G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant3(6), 956-972.‏
  45. Vessey, J.K. (2003). Plant growth promoting Rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.
  46. Vidović, B.B., Milinčić, D.D., Marčetić, M.D., Djuriš, J.D., Ilić, T.D., Kostić, A.Ž., & Pešić, M.B. (2022). Health benefits and applications of goji berries in functional food products development: A review. Antioxidants, 11(2), 248.
  47. Wang, F., Sun, Y., & Shi, Z. (2019). Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms, 7(9), 289.  https://doi.org/10.3390/microorganisms7090289
  48. Wang, Y., Wang, J., Chang, H., Ni, X., Tian, Y., & Qin, B. (2011). Flowering biology of Lycium barbarum NQ-2. Bulletin of Botanical Research31(3), 330-335.
  49. White, P.J., Bowen, H.C., Parmaguru, P., Fritz, M., Spracklen, W.P., Spiby, R.E., Meacham, M.C., Mead, A., Harriman, M., Trueman, L.J., & Smith, B.M. (2004). Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany, 55(404), 1927-1937. https://doi.org/10.1093/jxb/erh192
  50. Yadav, S.K., Singh, L., Singh, D., & Han, S.D. (2005). Selenium status in soil of northern districts of India. Journal Environ Manage, 75(2), 129-32. https://doi.org/10.1016/j.jenvman.2004.11.013
  51. Zahedyan, A., Jahromi, A.A., Zakerin, A., Abdossi, V., & Torkashvand, A.M. (2022). Nitroxin bio-fertilizer improves growth parameters, physiological and biochemical attributes of cantaloupe (Cucumis melo) under water stress conditions. Journal of the Saudi Society of Agricultural Sciences, 21(1), 8-20. https://doi.org/10.1016/j.jssas.2021.06.017
  52. Zarea, M.J., Ghalavand, A., Goltapeh, E.M., Rejali, F., & Zamaniyan, M. (2009). Effects of mixed cropping, earthworms (Pheretima), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria. Pedobiologia, 52(4), 223-235. https://doi.org/10.1016/j.pedobi.2008.10.004
CAPTCHA Image