با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران

2 بخش علوم باغبانی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

3 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران

چکیده

در این پژوهش به‌منظور بررسی تأثیر سطوح مختلف فسفر و محلول­پاشی روی بر ویژگی­های رشد، میزان روغن و فاکتور­های بیوشیمیایی گیاه دارویی عدس­الملک (Securigera securidaca)، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک­های کامل تصادفی با سه تکرار اجرا شد. تیمارها شامل چهار سطح فسفر (صفر، 50، 100 و 150 کیلوگرم در هکتار) و سه سطح محلول­پاشی روی در دوره گل‌دهی (بدون محلول­پاشی به‌عنوان شاهد، محلول­پاشی با غلظت چهار گرم در لیتر: دو هفته یک‌بار و هفته­ای یک‌بار) بودند. مهم‌ترین شاخصه­های رشد و عملکرد شامل تعداد ساقه، طول ساقه، تعداد غلاف در بوته، تعداد بذر در هر غلاف، طول غلاف و عملکرد بذر اندازه­گیری شد. همچنین مهم‌ترین ویژگی­های بیوشیمیایی عصاره بذر (فلاون و فلاونول، فلاونوئید کل، ترکیبات فنلی کل، میزان تانن و فعالیت آنتی­اکسیدانی)، درصد روغن و عملکرد روغن بذر نیز مورد سنجش قرار گرفت. نتایج نشان داد که کاربرد فسفر به‌تنهایی در افزایش تعداد ساقه، طول ساقه اصلی، عملکرد بذر، عملکرد روغن، میزان فلاونوئیدها و فعالیت آنتی­اکسیدانی بذر عدس‌الملک مؤثرتر از کاربرد تلفیقی فسفر و روی بود. کاربرد 50 کیلوگرم فسفر و محلول­پاشی دو هفته یک‌بار موجب افزایش تعداد ساقه، طول ساقه اصلی، تعداد غلاف در هر بوته، عملکرد بذر، میزان ترکیبات فنلی و عملکرد روغن شد، درحالی‌که کاربرد 100 کیلوگرم فسفر بدون کاربرد روی، در افزایش میزان فلاونوئیدها و فعالیت آنتی­اکسیدانی مؤثرتر بود. بااین‌حال کاربرد روی در افزایش ترکیبات فنلی، میزان تانن­، درصد روغن و عملکرد بذر مؤثر بود. به­طور کلی، با توجه به شرایط موجود در این تحقیق، علی‌رغم تفاوت­هایی که در صفات اندازه­گیری‌شده در پاسخ به مقادیر فسفر و روی دیده شد، غلظت 50 کیلوگرم فسفر و محلول­پاشی دو هفته یک‌بار روی، در بیشتر صفات نتایج رضایت‌بخشی نسبت به سایر تیمارها داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Different Levels of Phosphorus and Zinc Spraying on Growth Properties, Oil Content and Biochemical Characteristics of Securigera securidaca

نویسندگان [English]

  • S. Mohtashami 1
  • H. Gholami 2
  • A. Ghani 1
  • M. Kamalizadeh 3

1 Department of Horticultural Science, Faculty of Agriculture, Jahrom University, Jahrom, Iran

2 Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran

3 Department of Genetic and Plant Production, Faculty of Agriculture, Jahrom University, Jahrom, Iran

چکیده [English]

Introduction
Optimum nutrition of plants and reducing the effect of lack of important nutrients is one of the most effective factors on the production of all plants; so, it is one of the main pillars in improving the quantitative and qualitative attributes of the product. In order to achieve optimal yield with proper nutrition of the plant, each element must be provided to the plant sufficiently, and there must also be a balance between the absorbable amounts of elements in the soil. Securigera securidaca is one of the medicinal plants belonging to the Fabaceae family. There are many records about the traditional use of this plant and its seeds. Its seeds have antiparasitic, anticonvulsant, antihypertensive, antiulcer, analgesic, antioxidant, antiviral, antitumor and hypoglycemic effects have been reviewed. Considering the climatic conditions of Iran and its high potential in the production of medicinal plants and its economic justification; it is very necessary to pay attention to the nutrition of medicinal plants due to their different growth conditions with other crops and its effect on their growth and effective substances.
 
Materials and Methods
In this research, in order to evaluate the response of the Hatchet vetch plant (Securigera securidaca) to different levels of phosphorus and zinc foliar application, a factorial experiment was conducted in a randomized complete block design (RCBD) with two factors and three replications. The treatments include four levels of phosphorus (0, 50, 100 and 150 kg.h-1) and three levels of zinc foliar application during the flowering period (no foliar application as a control, foliar application: each two weeks once and once a week). Zinc foliar spraying was done with a concentration of 4 g per liter during before flowering to the formation of the pods (about one month), which was done twice and four times for the two-weekly and once-a-week treatments, respectively. This research was carried out in Mohammad Abad area of Jahrom city located in Fars province. The most important indicators of growth and yield were measured including: shoot number, length of main stem, number of pods per plant, number of seeds per pod, pod length and seed yield. Also, the most important biochemical characteristics of seed extract (flavon and flavonol, total flavonoid, total phenolic compounds, tannin content and antioxidant activity), oil percentage and seed oil yield were also measured.
 
 
 
Results and Discussion
Based on the results obtained from the variance analysis of the data, the effect of phosphorus and zinc on all measured traits was significant except for the number of seeds in pods and pod length. The results showed that the application of phosphorus alone was more effective than the combined application of phosphorus and zinc in increasing the number of stems, main stem length, seed yield, oil yield, the amount of flavonoids and antioxidant activity of Hatchet vetch plant seeds. The application of 50 kg of phosphorus increased the number of stems, the length of the main stem, the number of pods per plant, the yield of seeds, amount of phenolic compounds and oil yield of seed. While the use of 100 kg of phosphorus without the use of zinc was more effective in increasing the amount of flavonoid and antioxidant activity. However, the application of zinc was effective in increasing phenolic compounds, tannin content, oil percentage and seed yield. The interaction effect of the treatments showed that the highest seed yield (61.03 g.m-2) was related to 50 kg of phosphorus without zinc foliar spraying, while the lowest amount (32.01 g) was observed in 50 kg of phosphorus and zinc solution once a week treatment. The highest amount of total flavonoid (3.58 mg.g-1 dry weight) was found in the treatment of 100 kg of phosphorus without the application of zinc. While the lowest amount (1.11 and 1.24 mg) was observed in treatments without phosphorus (spraying zinc solution once every two weeks and once a week), respectively. In the treatments of 100 and 150 kg of phosphorus, increasing the frequency of zinc foliar spraying has reduced the amount of phenolic compounds in the seeds of this plant. Although this decrease is not significant statistically. Also, in the control, 50 and 150 kg of phosphorus treatments, increasing the frequency of zinc foliar spraying had no effect on the change of its antioxidant activity, while in the treatment of 100 kg of phosphorus fertilizer, increasing the frequency of zinc foliar spraying decreased the antioxidant activity of the seed extract of this plant.
 
Conclusions
In general, according to the conditions in this research, despite the differences that were seen in the measured traits in response to the amounts of phosphorus and zinc, the concentration of 50 kg of phosphorus and foliar spraying of zinc once every two weeks, in most of the traits were satisfactory compared to other treatments.

کلیدواژه‌ها [English]

  • Antioxidant activity
  • Bontalkhe
  • Flavonoids
  • Phenolic compounds
  • Seed

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Alloway, B.J. (2008). Zinc in soils and crop nutrition (2th Ed.). Brussels: International zinc association (IZA), 136 p.
  2. Ancolio, C., Azas, N., Mahiou, V., Ollivier, E., Di Giorgio, C., Keita, A., Timon-David, P., & Balansard, G. (2002). Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytotherapy Research, 16(7), 646-649. https://doi.org/10.1002/ptr.1025
  3. Askary, M., Amini, F., & Hosseinpour, L. (2016). Study of variability in growth, antioxidant defense system and protein content by zinc element application in periwinkle (Catharanthus roseus (L.) G. Don.) under salinity stress. Iranian Journal of Medicinal and Aromatic Plants, 32(1), 35-46. (in Persian with English abstract). http://dx.doi.org/10.22092/ijmapr.2016.106135
  4. Azizian-Shermeh, O., Einali A., & Valizadeh J. (2018). Physiological and biochemical responses of basil (Ocimum basilicum) seedlings to different concentrations of zinc. Iranian Journal of Plant Biology, 10(2), 35-56. (in Persian with English abstract). https://doi.org/10.22108/IJPB.2018.105679.1043
  5. Behbahani, M., Shanehsazzadeh, M., Shokoohinia, Y., & Soltani, M. (2013). Evaluation of anti-herpetic activity of methanol seed extract and fractions of Securigera securidaca in vitro. Journal of Antivirals and Antiretrovirals, 5(4), 72-76. https://doi.org/10.4172/jaa.100006
  6. Bonnet, M., Camares, O., & Veisseire, P. (2000). Effect of zinc and influence of Acremonium lolli on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activity of ryegrass. Experimental Botany, 51(346), 945-953. https://doi.org/10.1093/jxb/51.346.945
  7. Borowiak, K., Gasecka, M., Mleczek, M., Dabrowski, J., Chadzinikolau, T., Magdziak, Z., Golinski, P., Rutkowski, P., & Kozubik, T. (2015). Photosynthetic activity in relation to chlorophylls, carbohydrates, phenolics and growth of a hybrid Salix purpurea × triandra × viminalis 2 at various Zn concentrations. Acta Physiologiae Plantarum, 37(8), 155. https://doi.org/10.1007/s11738-015-1904-x
  8. Broadhurst, R.B., & Jones, W.T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9), 788–794. https://doi.org/10.1002/jsfa.2740290908
  9. Feiziasl, V., & Valizadeh, Gh. (2004). Effects of phosphorus and zinc fertilizer applications on nutrient concentrations in plant and grain yield in cv. Sardari "Triticum aestivum" under dryland conditions. Iranian Journal of Crop Sciences, 6(3), 223-235. (in Persian with English abstract). https://doi.org/20.1001.1.15625540.1383.6.3.5.4
  10. Garjani, A., Fathiazad, F., Zakheri, A., Akbari, N.A., Azarmie, Y., Fakhrjoo, A., Andalib, S., & Maleki-Dizaji, N. (2009). The effect of total extract of Securigera securidaca seeds on serum lipid profiles, antioxidant status, and vascular function in hypercholesterolemic rats. Journal of Ethnopharmacology, 126(3), 525-532. https://doi.org/10.1016/j.jep.2009.09.003
  11. Hammond, J.P., Broadley, M.R., & White, P.J. (2004). Genetic responses to phosphorus deficiency. Annals of Botany, 94(3), 323-332. https://doi.org/10.1093/aob/mch156
  12. Jamshidzadeh, A., Pasdaran, A., Heidari, R., & Hamedi, A. (2018). Pharmacognostic and anti-inflammatory properties of Securigera securidaca seeds and seed oil. Research Journal of Pharmacognosy (RJP), 5(3), 31-39. https://doi.org/10.22127/RJP.2018.64870
  13. Kharazmi, M., Mohammadkhani, N., & Servati, M. (2023). Effect of phosphorus deficiency on growth properties and essential oil of Salvia officinalis and Mentha aquatica L. Journal of Plant Research (Iranian Journal of Biology), 36(1), 1-15. (in Persian with English abstract)https://dorl.net/dor/20.1001.1.23832592.1402.36.1.1.2
  14. Komissarenko, A.N., & Kovalev, V.N. (1987). Hydroxycoumarins and flavones of Securigera securidaca. Chemistry of Natural Compounds, 23(2), 252. https://doi.org/10.1007/BF00598775
  15. Kumar, S., Kumar, S., & Mohapatra T. (2021). Interaction between macro‐ and micro-nutrients in plants. Frontiers in Plant Science, 12, 1-9. https://doi.org/10.3389/fpls.2021.665583
  16. Mangal, M., Agarwal, M., & Bhargava, D. (2013). Effect of cadmium and zinc on growth and biochemical parameters of selected vegetables. Journal of Pharmacognosy and Phytochemistry, 2, 106-114. https://doi.org/10.1371/journal.pone.0087582
  17. Mard, S., Bahari, Z., Eshaghi, N., & Farbood, Y. (2008). Antiulcerogenic effect of Securigera securidaca seed extract on various experimental gastric ulcer models in rats. Pakistan Journal of Biological Sciences, 11(23), 2619-2623. https://doi.org/10.3923/pjbs.2008.2619.2623
  18. Mehdiniya Afra, J., & Manavi Amri, S.S. (2015). The effects of interaction between the elements phosphorus and zinc are some traits of soybean cultivars of Sari. Iranian Journal of Dynamic Agriculture, 11(4), 309-315. (in Persian with English abstract).
  19. Mehdiniya Afra, J., Gholizadeh, A.L., Mahmoudi, M., Mobasser, H.R., & Manavi Amri S.S. (2014). Response of two soybeans varieties (Glycine max) to phosphorous and zinc. Journal of Soil Management and Sustainable Production, 4(1), 89-108. (in Persian with English abstract). https://dorl.net/dor/20.1001.1.23221267.1393.4.1.5.9
  20. Menichini, F., Tundis, R., Bonesi, M., Loizzo, M.R., Conforti, F., Statti G., Di Cindi, B., Houghton, P.J., & Menichini, F. (2009). The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Habanero. Food Chemistry, 114, 553-560. https://doi.org/10.1016/j.foodchem.2008.09.086
  21. Minaiyan, M., Moattar, F., & Vali, A. (2003). Effect of Securigera securidaca seeds on blood glucose level of normal and diabetic rats. Iranian Journal of Pharmaceutical Sciences, 2(1), 151-156. https://doi.org/10.22037/ijps.v2.39738
  22. Motalebifard, R. (2017). Effects of zinc and phosphorus levels on yield, nutrients uptake and zinc recovery and agronomic efficiency in potato. Journal of Water and Soil, 31(3), 886-899. (in Persian with English abstract). https://doi.org/10.22067/JSW.V31I3.54513
  23. Mousavi, S.R., Galavi, M., & Rezaei, M. (2012). The interaction of zinc with other elements in plants: A review. International Journal of Agriculture and Crop Sciences, 4(24), 1881-1884.
  24. Mozaffarian, V. (2003). A Dictionary of Iranian Plant names. Third Farhang Moaser Publishers, Tehran, Iran. 671 p.
  25. Mrschner, H. (2012). Marschner's Mineral Nutrition of Higher Plants. 3rd Edition, Academic Press, London, UK, 651p. https://doi.org/10.1016/C2009-0-63043-9
  26. Mukhopadhyay, M.S., Das, A., Subba, P., Bantawa, P., Sarkar, B., Ghosh, P., & Mondal, T.K. (2013). Structural, physiological, and biochemical profiling of tea plants under zinc stress. Biologia Plantarum, 57, 474-480. https://doi.org/10.1007/s10535-012-0300-2
  27. Oke, F., Aslim, B., Ozturk, S., & Altundag, S. (2009). Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Food Chemistry, 112, 874-879. https://doi.org/10.1016/j.foodchem.2008.06.061
  28. Pandey, N., Pathak, G.C., & Sharma, C.P. (2006). Zinc is critically required for pollen function and fertilization in lentil. Journal of Trace Elements in Medicine and Biology, 20, 89-96. https://doi.org/10.1016/j.jtemb.2005.09.006
  29. Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova-Damyanova, B., Sabatini, A.G., Marcazzan, G.L., & Bogdanov, S. (2004). Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochemistry Analysis, 15, 235-240. https://doi.org/10.1002/pca.777
  30. Ronaghi, A., Adhami, E., & Karimian, N. (2002). Effect of phosphorus and zinc on the growth and chemical composition of corn. Journal of Water and Soil Science, 6(1), 105-119. (in Persian with English abstract). https://dorl.net/dor/20.1001.1.24763594.1381.6.1.2.9
  31. Sadat-Ebrahimi, S., Mir, M.H., Amin, G., & Hajimehdipoor, H. (2014). Identification of amino acids in Securigera securidaca, a popular medicinal herb in Iranian folk medicine. Research Journal of Pharmacognosy, 1(1), 23-26.
  32. Shahidi, S., & Pahlevani, P. (2013). Antinociceptive effects of an extract of Securigera securidaca and their mechanisms in mice. Neurophysiology, 45(1), 34-38.
  33. Ticconi, C.A., & Abel, S. (2004). Short on phosphate: Plant surveillance and counter measures. Trends in Plant Science, 9, 548-555. https://doi.org/10.1016/j.tplants.2004.09.003
  34. Tofighi, Z., Asgharian, P., Goodarzi, S., Hadjiakhoondi, A., Ostad, S., & Yassa N. (2014). Potent cytotoxic flavonoids from Iranian Securigera securidaca. Medicinal Chemistry Research, 23(4), 1718-1724. https://doi.org/10.1007/s00044-013-0773-3
  35. Vassilev, A., Nikolova, A., Koleva, L., & Lidon, F. (2011). Effect of excess zinc on growth and photosynthetic performance of young bean plants. Journal of Phytology, 3, 58-62.
  36. Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compound in 32 selected herbs. Food Chemistry, 1005, 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038
  37. Zare Dehabadi, S., & Asrar, Z. (2009). Effect of excess zinc on the concentration of some mineral element and antioxidant responses of spearmint (Mentha spicata L.). Iranian Journal of Medicinal and Aromatic Plants, 24(4), 530-540. (in Persian with English abstract).

 

 

 

CAPTCHA Image