با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم کشاورزی، دانشگاه پیام نور، تهران، ایران

2 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اراک، ایران

چکیده

پژوهش حاضر با هدف مقایسه ترکیبات معدنی (غلظت عناصر آهن، روی و کلسیم) و بیوشیمیایی (محتوای آنتوسیانین) انارهای (Punica granatum L.) مبتلا به عارضه سفیدشدگی آریل و سالم رقم ̓ملس ساوه̒ (سال 1401) و بررسی اثر محلول­پاشی عناصر معدنی اشاره‌شده در بروز و شدت عارضه سفیدشدگی آریل (سال 1402) طراحی گردید. در سال 1402، آزمایشی به‌صورت فاکتوریل (2×3×3) در قالب طرح بلوک کامل تصادفی در سه تکرار و دو مرحله (شروع تشکیل میوه و شروع رسیدگی میوه) اجرا شد. تیمارهای آزمایش شامل محلول­پاشی با سه غلظت سولفات آهن (صفر، دو و چهار در هزار به‌ترتیب F0، F2 و F4)، سه غلظت سولفات روی (صفر، سه و شش در هزار به‌ترتیب Zn0، Zn3 و Zn6) و دو غلظت کلسیم کلرید (صفر و چهار در هزار به‌ترتیب Ca0، و Ca4) بودند. براساس آزمون (38  df=،05/0 t(α=مستقل، به استثناء غلظت Zn، غلظت عناصر Fe، Ca و محتوای آنتوسیانین در میوه­های سالم بیشتر از میوه­های آسیب‌دیده بود. نتایج تجزیه واریانس نشان داد که محلول­پاشی با سولفات آهن، سولفات روی و کلسیم کلرید به­صورت جداگانه یا ترکیبی در کاهش وقوع و شدت سفیدشدگی آریل مؤثر بود. از سوی دیگر، تأثیر مشارکت عنصر کلسیم در کاهش بروز عارضه سفیدشدگی آریل قابل ملاحظه و حاکی از اثر هم­افزایی عنصر کلسیم با عناصر آهن و روی بود؛ به­طوری‌که کاربرد همزمانZn -Fe در ترکیب با Ca کارآیی بیشتری نسبت به سایر تیمارها برای کاهش صفات مورد اشاره داشت. ازاین‌رو، به­منظور کاهش همزمان در وقوع و شدت عارضه سفیدشدگی آریل انار، محلول­پاشی با سولفات آهن چهار در هزار -سولفات روی شش یا سه در هزار- کلسیم کلرید چهار در هزار ( Fe4Zn6Ca4 ،Fe4Zn3Ca4) در دو مرحله شروع تشکیل میوه و شروع رسیدگی میوه انار توصیه می­شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Foliar Spraying of Iron, Zinc and Calcium in the Stages of Fruit Maturity on the Incidence and Severity of Pomegranate (Punica granatum L.) Aril Paleness

نویسندگان [English]

  • S. Karami 1
  • S. Faraji 2

1 Department of Agriculture, Payame Noor University (PNU), Tehran, Iran

2 Crop and Horticultural Science Research Department, Markazi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Arak, Iran

چکیده [English]

Introduction
Mineral nutrients (macro and micro) and polyphenolic compounds are natural components of many fruits and play an important role in maintaining the quality and nutritional value of the fruit. Therefore, optimal management of plant nutrition in order to increase the quantity and quality of the product and improve the synthesis of secondary metabolites, especially during fruit growth, is necessary and unavoidable. Nevertheless, in the last decade, the occurrence of pomegranate (Punica granatum L.) aril paleness has been reported as a new and pervasive factor in reducing the quality of pomegranate fruit in many countries, including Iran. The present research was conducted with the aim of comparing the mineral concentrations (iron, zinc, and calcium) and biochemical characteristics (anthocyanin content) in pomegranates affected by aril paleness and healthy pomegranates of the ‘Malase Saveh’cultivar (2022). Additionally, the study aimed to investigate the effect of foliar application of the mentioned mineral elements on the incidence and severity of the aril paleness condition (2023).
 
Materials and Methods
This study was carried out during two years (2022 and 2023) and two independent trials. First, based on the introduced factors affecting the occurrence of pomegranate paleness (temperature, irrigation water and soil salinity), two orchards with medium and high percentage of pomegranate aril paleness (orchard number 9 and 17, respectively) were selected based on the results of Faraji & Karami (2024a). The first trial in 2022 (orchard No. 9): At harvest and after splitting fruits, twenty healthy fruits and affected fruits by the aril paleness disorder were randomly selected and were used for determination of mineral nutrient (Fe, Zn and Ca) and anthocyanin content in the laboratory. The second trial in 2023 (orchard No. 17): In the first phase, 70 trees were selected and labeled, then at the end of September (2022), percent and severity aril paleness of each tree was calculated. In the second phase (2023), based on the results of the first year, 54 trees as experimental unit (with aril paleness percentage>85 and paleness severity of high/very high) were selected from previous trees. Afterwards, a factorial experiment (3×3×2) based on a randomized complete block design with three replications and two stages (the beginning of fruit set and the beginning of fruit ripening) were implemented. Experimental treatments included foliar spraying with three concentrations of iron sulfate (0, 2 and 4 per thousand respectively F0, F2 and F4), three concentrations of zinc sulfate (0, 3 and 6 per thousand respectively Zn0, Zn3 and Zn6) and two concentrations of calcium chloride (0 and 4 per thousand respectively Ca0 and Ca4). Then at harvest, the percentage and severity of aril paleness each treatment was calculated.
 
 
Results and Discussion
Data analysis using the independent t-test (α=0.05, df=38) for the first trial (2022) showed that, the nutritional value of the affected fruit by aril paleness is anticipated to be far less than that of the healthy fruit; so that except for the Zn concentration, the concentration of Fe, Ca and anthocyanin content in affected fruits were lower than in healthy fruits. The results of the variance analysis for the second trial (2023) indicated that foliar spraying with iron sulfate, zinc sulfate, and calcium chloride, either individually or in combination, was effective in reducing the occurrence and severity of aril paleness. A comparison of the mean percentage of aril paleness between the two groups (before and after foliar spraying, regardless of the treatment combination) using a dependent t-test (α=0.05, df=16) also showed that foliar spraying was effective in reducing the percentage of aril paleness. Furthermore, the involvement of calcium in reducing the incidence and severity of aril paleness was found to be significant. In the absence of calcium element, the incidence of paleness was recorded in the range of 60.17-75.00%, and with the inclusion of calcium in the treatment compounds, the percentage of paleness was recorded in the range of 21.83-0.53%. Also, the mean comparison of the double interaction and main effects of elements indicated the synergistic effect of calcium element with Fe and Zn element in reducing the aril paleness disorder. So that, the combination of Fe-Ca and Zn-Ca has been more successful in reducing the aril paleness disorder than the pure application of each element of iron, zinc and calcium.
 
Conclusions
Overall, the simultaneous application of Zn-Fe in combination with Ca was more effective in reducing of the mentioned traits than other treatments. Therefore, in order to simultaneously reduce the occurrence and severity of aril paleness, spraying with Fe4Zn6Ca4 and Fe4Zn3Ca4 is recommended in two stages of pomegranate fruit development, including the beginning of fruit set and the beginning of fruit ripening.

کلیدواژه‌ها [English]

  • Anthocyanin
  • Foliar nutrition
  • Nutritional elements
  • Pomegranate orchards

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abdollahi, F., Erfani-Moghadam, J., Zarei, A., & Rostaminia, M. (2024). Effect of foliar application of silica and calcium nitrate on cracking, quantitative and qualitative characteristics of pomegranate fruit. Iranian Journal of Horticultural Science, 55(1), 123-134. (in Persian with English abstract). https://doi.org/10.22059/ijhs.2023.362286.2116
  2. Ahmadi, M.A., Daghighi, S., Azarmi-Atajan, F., & Bayat, H. (2023). Effects of foliar application of calcium chloride and potassium sulfate on physical and biochemical properties of jujube fruit (Ziziphus jujuba). Journal of Horticultural Science, 37(3), 769-786. https://doi.org/10.22067/jhs.2023.79367.1204
  3. Aizza, L.C.B., & Dornelas, M.C. (2011). A genomic approach to study anthocyanin synthesis and flower pigmentation in passionflowers. Journal of Nucleic Acids, 2011(1), 371517. https://doi.org/10.4061/2011/371517
  4. Álvarez-Fernández, A., Melgar, J. C., Abadía, J., & Abadía, A. (2011). Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis) and peach (Prunus persica (L.) Batsch). Environmental and Experimental Botany, 71(2), 280-286. https://doi.org/10.1016/j.envexpbot.2010.12.012
  5. Amaliotis, D., Velemis, D., Bladenopoulou, S., & Karapetsas, N. (2002). Leaf nutrient levels of strawberries (cv. Tudla) in relation to crop yield. Acta Horticulturae, 567, 447-450. https://doi.org/10.17660/ActaHortic.2002.567.93
  6. Amirinejad, M., Akbari, G., Baghizadeh, A., Allahdadi, I., Shahbazi, M., & Naimi, M. (2015). Effects of drought stress and foliar application of zinc and iron on some biochemical parameters of cumin. Journal of Crops Improvement, 17(4), 855-866. https://doi.org/10.22059/jci.2015.55136
  7. Ankerman, D. (1974). Soil and Plant Analysis, Agricultural Laboratories Inc., New York, USA. pp. 82.
  8. Asadi, E., Ghehsareh, A.M., Moghadam, E.G., Hodaji, M., & Zabihi, H.R. (2019). Improving of pomegranate aril paleness disorder through application of Fe and Zn elements. Indian Journal of Horticulture, 76(2), 279-288. https://doi.org/10.5958/0974-0112.2019.00043.4
  9. Badihi, L., Gerami, M., Akbarinodeh, D., Shokrzadeh, M., & Ramezani, M. (2021). Physio-chemical responses of exogenous calcium nanoparticle and putrescine polyamine in saffron (Crocus sativus). Physiology and Molecular Biology of Plants, 27, 119-133. https://doi.org/10.1007/s12298-020-00923-x
  10. Basiri, S., & Zeraatgar, H. (2023). Effect of calcium chloride, cultivar and maturity on shelf life of fresh jujube fruits. Journal of Agricultural Science and Technology, 25(6), 1375-1370. https://doi.org/10.22034/jast.25.6.1357
  11. Bedigian, D. (2007). Pomegranates. Ancient roots to modern medicine. Medicinal and aromatic plants—Industrial profiles 43. Economic Botany, 61(1), 107-108. https://doi.org/10.1663/0013-0001(2007)61[107b:PARTMM]2.0.CO;2
  12. Borochov-Neori, H., Judeinstein, S., Tripler, E., Harari, M., Greenberg, A., Shomer, I., & Holland, D. (2009). Seasonal and cultivar variations in antioxidant and sensory quality of pomegranate (Punica granatum) fruit. Journal of Food Composition and Analysis, 22(3), 189-195.
  13. Cheour, F.U.L.Q., Willemot, C., Arul, J., Desjardins, Y., Makhlouf, J., Charest, P.M., & Gosselin, A. (1990). Foliar application of calcium chloride delays postharvest ripening of strawberry. Journal of the American Society for Horticultural Science, 115(5), 789-792. https://doi.org/10.1016/j.jfca.2008.10.011
  14. Davarpanah, S., Akbari, M., Askari, M.A., Babalar, M., & Naddaf, M.E. (2013). Effect of iron foliar application (Fe-EDDHA) on quantitative and qualitative characteristics of pomegranate CV. “ Malas-e-Saveh". World of Sciences Journal, 4, 179-187.
  15. El- Razek, E.A., Yousef, A.R.M., & Abdel-Hamed, N. (2015). Effect of chelated Fe, Zn and Mn soil application with spraying GA3 and ascorbic acid on growth, yield and fruit quality of Flame Seedless grapevines under calcareous soil conditions. International Journal of ChemTech Research, 8(6), 441-451.
  16. Faraji, S., & Karami, S. (2024a). Spatial distribution of pomegranate aril paleness and its relationship with some environmental and non-environmental factors using geographic information system (GIS). Iranian Journal of Horticultural Science. (in Persian with English abstract). https://doi.org/10.22059/ijhs.2024.372626.2156
  17. Faraji, S., & Karami, S. (2024b). The effect of complication of pomegranate aril paleness on the secondary metabolites content and activity of phenylalanine amonialyase (PAL) at different stages of fruit ripening. Iranian Journal of Horticultural Science. (in Persian with English abstract). https://doi.org/10.22059/ijhs.2024.378987.2184
  18. Gerami, M., Akbari Nodehi, D., Amiri, M., & Darvakh, E. (2024). Effects of calcium nano-paticle on some physiologic and biochemical characteristics of Ocimum basilicum under salinity stress. Iranian Journal of Medicinal and Aromatic Plants Research, 40(2), 415-400. (in Persian with English abstract). https://doi.org/10.22092/ijmapr.2024.131551
  19. Ghasemi-Soloklui, A.A., Kordrostami, M., & Gharaghani, A. (2023). Environmental and geographical conditions influence color, physical properties, and physiochemical composition of pomegranate fruits. Scientific Reports, 13(1), 15447. https://doi.org/10.1038/s41598-023-42749-z
  20. Ghayekhloo, S., & Sedaghathoor, S. (2015). Changes in quantitative and qualitative traits of miagava tangerine (Citrus reticulata) as affected by Fe, Zn and Mn micronutrients foliar application. International Journal of Bioscience, 6(1), 218-226. https://dx.doi.org/10.12692/ijb/6.1.218-227
  21. Gil, M.I., Tomás-Barberán, F.A., Hess-Pierce, B., Holcroft, D.M., & Kader, A.A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48(10), 4581-4589. https://doi.org/10.1021/jf000404a
  22. Giusti, M.M., & Wrolstad, R.E. (2001). Anthocyanins. characterization and measurement with UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry, 1, 1-13.
  23. Gould, K., Davies, K.M., & Winefield, C. (Eds.). (2008). Anthocyanins: Biosynthesis, Functions, and Applications. Springer Science and Business Media, LLC. pp. 8, 174.
  24. Hamouda, H.A., El-Dahshouri, M.F., Hafez, O.M., & Zahran, N.G. (2015). Response of leconte pear performance, chlorophyll content and active iron to foliar application of different iron sources under the newly reclaimed soil conditions. International Journal of Chemistry Technolgy Research, 8(4), 1446-1453.
  25. Han, Z. H., Shen, T., Korcak, R.F., & Baligar, V.C. (1998). Iron absorption by iron‐efficient and‐inefficient species of apples. Journal of Plant Nutrition, 21(1), 181-190. https://doi.org/10.1080/01904169809365392
  26. Hasani, M., Zamani, Z., Savaghebi, G., & Fatahi, R. (2012). Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals. Journal of Soil Science and Plant Nutrition, 12(3), 471-480. http://dx.doi.org/10.4067/S0718-95162012005000009
  27. Hassan, H.S.A., Sarrwy, S.M.A., & Mostafa, E.A.M. (2010). Effect of foliar spraying with liquid organic fertilizer, some micronutrients, and gibberellins on leaf mineral content, fruit set, yield, and fruit quality of “Hollywood” plum trees. Agriculture and Biology Journal of North America, 1(4), 638-643.
  28. Hepaksoy, S., Aksoy, U., Can, H. Z., & Ui, M.A. (2000). Determination of relationship between fruit cracking and some physiological responses, leaf characteristics and nutritional status of some pomegranate varieties. In P. Melgarejo, J.J. Martínez-Nicolás & J. Martínez-Tomé (Eds.), Production, Processing and Marketing of Pomegranate in the Mediterranean Region: Advances in Research and Technology. pp. 87-92. Options Méditerranéennes Série A. Séminaires Méditerranéens.
  29. Kavand, M., Arzani, K., Barzegar, M., & Mirlatifi, M. (2020). Pomegranate (Punica granatum) fruit quality attributes in relation to aril browning disorder. Journal of Agricultural Science and Technology, 22(4), 1053-1065. (in Persian with English abstract). https://dorl.net/dor/20.1001.1.16807073.2020.22.4.7.9
  30. Koushesh Saba, M., Arzani, K., & Barzegar, M. (2016). Impact of postharvest calcium treatments on storage life, biochemical attributes and chilling injury of apricot. Journal of Agricultural Science and Technology, 16, 1355-1366.
  31. Kulkarni, A.P., & Aradhya, S.M. (2005). Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chemistry, 93(2), 319-324. https://doi.org/10.1016/j.foodchem.2004.09.029
  32. Landi, L., Feliziani, E., & Romanazzi, G. (2014). Expression of defense genes in strawberry fruits treated with different resistance inducers. Journal of Agricultural and Food Chemistry, 62(14), 3047-3056. https://doi.org/10.1021/jf404423x
  33. Latha, K., Dhanya, K.J., & Swapna, K.R. (2013). Isolation and characterization of polyphenol oxidase from Phyllanthus emblica (Indian gooseberry). International Journal of Science Inventions Today, 2, 311-318.
  34. Mayer, A.M. (2006). Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry, 67(21), 2318-2331. https://doi.org/10.1016/j.phytochem.2006.08.006
  35. Meighani, H., Ghasemnezhad, M., & Bakshi, D. (2014). Evaluation of biochemical composition and enzyme activities in browned arils of pomegranate fruits. International Journal of Horticultural Science and Technology, 1(1), 53-65. https://doi.org/10.22059/ijhst.2014.50518
  36. Mirdehghan, S.H., & Rahemi, M. (2007). Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum) fruit. Scientia Horticulturae, 111(2), 120-127. https://doi.org/10.1016/j.scienta.2006.10.001
  37. Mirzapour, M.H., & Khoshgoftarmanesh, A.H. (2013). Effect of soil and foliar application of iron and zinc on quantitative and qualitative yield of pomegranate. Journal of Plant Nutrition, 36(1), 55-66. https://doi.org/10.1080/01904167.2012.733049
  38. Moradinezhad, F., Hassan Pour, S., & Sayyari Zahan, M.H. (2018). Influence of preharvest spray of calcium chlorideand salicylic acid on physicochemical and quality properties of fresh seedless barberry fruit. Journal of Horticultural Science, 32(1), 61-74. (in Persian with English abstract). https://doi.org/10.22067/jhorts4.v32i1.60331
  39. Mori, K., Goto-Yamamoto, N., Kitayama, M., & Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58(8), 1935-1945. https://doi.org/10.1093/jxb/erm055
  40. Narjesi, V. (2021). Effects of different shade netting treatments on some quantitative and qualitative characteristics of pomegranate fruits cv. Malas-e-Saveh. Journal of Agricultural Science and Sustainable Production, 31(1), 275-293. (in Persian). https://doi.org/10.22034/saps.2021.12815
  41. Oren-Shamir, M. (2009). Does anthocyanin degradation play a significant role in determining pigment concentration in plants?. Plant Science, 177(4), 310-316. https://doi.org/10.1016/j.plantsci.2009.06.015
  42. Pojer, E., Mattivi, F., Johnson, D., & Stockley, C.S. (2013). The case for anthocyanin consumption to promote human health: A review. Comprehensive Reviews in Food Science And Food Safety, 12(5), 483-508. https://doi.org/10.1111/1541-4337.12024
  43. Rachappanavar, V., Padiyal, A., Sharma, J.K., Gupta, S.K., & Negi, N. (2021). Efficient Exploration of Silicon Derived Benefits to Combat Biotic and Abiotic Stresses in Fruit Crops. Preprint from Research Square, 13 Dec 2021. https://doi.org/10.21203/rs.3.rs-1052525/v1
  44. Rahemi, M. (2011). Post-Harvest Physiology: An Introduction to the Physiology and Handling of Fruits, Vegetables and Ornamental. Shiraz University Press, Shiraz, Iran. pp. 460.
  45. Rajpal, S., Godara, N.R., & Ahlawat, V.P. (2002). Qualitative attributes affected by foliar spraying of nutrients and growth regulators in ber (Ziziphus mauritiana) cv. Umran. Haryana Journal of Horticultural Sciences, 31(1/2), 23-25.
  46. Ramezanian, A., Rahemi, M., & Vazifehshenas, M.R. (2009). Effects of foliar application of calcium chloride and urea on quantitative and qualitative characteristics of pomegranate fruits. Scientia Horticulturae, 121(2), 171-175. https://doi.org/10.1016/j.scienta.2009.01.039
  47. Rezaei, S., Amiri, M., Bahari, A., Razavi, F., Soleimani Aghdam, M., & Beyrami, H. (2022). Effect of foliar iron application on anthocyanin genes expression during of developmental stages in strawberry fruit. Journal of Plant Research (Iranian Journal of Biology), 35(4), 745-762. (in Persian with English abstract).
  48. Schaart, J.G., Dubos, C., Romero De La Fuente, I., van Houwelingen, A.M., de Vos, R.C., Jonker, H.H., Xu, W., Routaboul, J.M., Lepinies, L., & Bovy, A.G. (2013). Identification and characterization of MYB‐b HLH‐WD 40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (F. ragaria× ananassa) fruits. New Phytologist, 197(2), 454-467. https://doi.org/10.1111/nph.12017
  49. Sedaghat, S., Rahemi, M., & Jafari, M. (2021). Effects of soil and water salinity on aril whitening in pomegranate. Research in Pomology, 6(1), 121-128. (in Persian). https://doi.org/10.30466/rip.2021.121091
  50. Shete, M.B., & Waskar, D.P. (2005). Internal breakdown of pomegranate (Punica granatum) fruits-a review. Journal of Maharashtra Agricultural Universities, 30, 59-61.
  51. Shivashankara, K.S., Subhas, C.M., Laxman, R.H., Vijayalaxmi, G.P., & Bujjibabu, C.S. (2004). Physiological and biochemical changes associated with aril browning of pomegranate (Punica granatum Ganesh). Journal of Plant Biology, 31, 149-152.
  52. Siegelman, H.W., & Hendricks, S.B. (1958). Photocontrol of anthocyanin synthesis in apple skin. Plant Physiology, 33(3), 185. https://doi.org/10.1104/pp.33.3.185
  53. Song, C.Z., Liu, M.Y., Meng, J.F., Chi, M., Xi, Z.M., & Zhang, Z.W. (2015). Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera Merlot growing on zinc deficient soil. Molecules, 20(2), 2536-2554. https://doi.org/10.3390/molecules20022536
  54. Tabatabaei, J. (2013). Principles of Plant Mineral Nutrition. Tabriz University Press, Tabriz, Iran. pp. 562. (In Persian)
  55. Taiz, L., & Zeiger, E. (2002). Mineral Nutrition. p. 67-86. Plant Physiology. 3rd Ed. Sinauer Associates Inc. Publishers.
  56. Tomás‐Barberán, F.A., & Espín, J.C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853-876. https://doi.org/10.1002/jsfa.885
  57. Zabihi, H.R., & Rezaeian, S. (2019). The effect of iron and zinc sulfate foliar application on the reduction of seed whitening of Shisheh-Cap cultivar for pomegranate fruit. Journal of Horticultural Science, 33(2), 323-333. (in Persian). https://doi.org/10.22067/jhorts4.v0i0.76011
  58. Zaouay, F., Mena, P., Garcia-Viguera, C., & Mars, M. (2012). Antioxidant activity and physico-chemical properties of Tunisian grown pomegranate (Punica granatum) cultivars. Industrial Crops and Products, 40, 81-89. https://doi.org/10.1016/j.indcrop.2012.02.045
  59. Zareh, M., Adhami, E., Owliaie, H., & Ramezanian, A. (2012). Effects of foliar applications of iron and zinc on yield, fruit quantitative and qualitative characteristics and mineral composition of pomegranate (Punica granatum) leaf. Journal of Horticultural Science and Technology, 13, 189-198. (in Persian)
  60. Zhao, Z., Zhu, L., Yu, S., & Saska, M. (2011). Partial purification and characterization of polyphenol oxidase from sugarcane (Saccharum officinarum). Zuckerindustrie-Sugar Industry, 136(5), 296.

 

CAPTCHA Image