بررسی اثر دی‌اکسیدکربن بر روی صفات مورفوفیزیولوژیکی زیتون تلخ (.Melia azedarach Linn) در شرایط گلخانه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه یزد

چکیده

غنی سازی دی اکسیدکربن در گلخانه ها می تواند به عنوان راهکاری برای کاهش زمان تولید، بهبود قدرت رشد و همچنین افزایش کیفیت گیاه استفاده شود. از طرفی با افزایش غلظت دی اکسیدکربن محیط در سال های آینده، مواجه ایم. لذا تحقیق حاضر به منظور بررسی تاثیر افزایش دی‌اکسیدکربن بر روی برخی صفات مورفولوژیک و فیزیولوژیک نهال های سه ماهه گونه زیتون تلخ (Melia azedarach Linn.) در شرایط گلخانه‌ای انجام شد. سطوح دی اکسیدکربن استفاده شده عبارت بودند از 3 غلظت 450 (شاهد)، 750 و 1100 پی پی ام که به صورت طرح کاملاً تصادفی در سه تکرار اجرا شد. نهال ها به مدت دو ماه تحت تیمار قرار گرفتند. سپس برخی صفات مورفولوژیک و فیزیولوژیک آن ها اندازه گیری شد. نتایج نشان داد که غلظت های 750 و 1100 پی‌پی‌ام دی اکسیدکربن، تمام صفات مورفولوژیک به استثنای وزن خشک ریشه و ارتفاع ساقه و صفات فیزیولوژیک شامل میزان پرولین، ازت و محتوای آب نسبی برگ را به طور معنی دار تحت تاثیر قرار داد. اما غلظت 750 پی پی ام دی اکسیدکربن، بیشترین اثر را بر روی صفات مورد مطالعه داشت. به طوری‌که میانگین وزن خشک اندام هوایی، بیوماس ماده خشک و مقدار پرولین را به بیش از سه برابر و وزن تر اندام هوایی و ریشه و بیوماس ماده تر را بیش از دو برابر نسبت به شاهد افزایش داد. بیشترین میانگین قطر یقه و میزان ازت هم در غلظت 750 پی‌پی‌ام مشاهده شد. همچنین غلظت های بالای دی اکسیدکربن به طور معنی داری سبب افزایش تعداد برگ ها به بیش از دو برابر و همچنین ارتفاع ساقه نسبت به میانگین شاهد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing The Effect of Carbon Dioxide on Physio-Morphological Traits of Bitter Olive (Melia azedarach Linn.) Under Greenhouse Conditions

نویسندگان [English]

  • Parvaneh Yousefvand
  • Asghar Mosleh Arani
  • Afagh Tabandeh Saravi
University Yazd
چکیده [English]

Introduction: Climate change has great impact on global production of several major plants. Negative effects of increasing carbon dioxide concentration in the world, on the one hand, and positive effects of the gas on plants, on the other hand, are the most important reasons for investigating the gas effects on different plants. Many studies have been conducted to examine the effects of elevated CO2on plants during the past several decades. Carbon dioxide enrichment in greenhouses can be used as a mechanism for reducing production time, improving quality and increasing plant vigor. The world is facing an increase in the concentration of carbon dioxide in the coming years. The physiological responses of plant are affected by CO2concentration,among which changes in nitrogen, chlorophyll content, proline and soluble sugar have been observed in many studies. The significant changes in the levels of these characteristics are likely to cause marked effects on the entire metabolism of plant. Since the proteins of the Calvin cycle and thylakoid represent the majority of leaf nitrogen, chlorophyll content is the central part of the energy manifestation and can directly determine photosynthetic response and primary production. This study was aimed to investigate the effects of elevated concentration ofCO2 on some morphological and physiological traits of Melia azedarachunder greenhouse conditions. .
Materials and Methods: The experiment was conducted in a CO2 – controlled glasshouse in a completely randomized design with three replications in Yazd University. The glasshouse consisted of three separate chambers with threeCO2levels of control (450 ppm), 750ppm, and 1100ppm.The concentration of CO2within each chamber was monitored constantly three times a week. After two months, morphological characteristics such as diameter of the collar, height of stem, number of leaves, wet weight of shoots, root wet weight, wet matter biomass, dry weight of shoots, root dry weight, dry matter biomass, and physiological characteristics including proline content of leaves, soluble sugar of leaves, a andb chlorophyll content, total chlorophyll content, carotenoid, nitrogen, phosphorus, potassium and water content of leaves were measured. To analyze the data, normality was assessed using Kolmogorov–Smirnov test. Analysis of variance was performed to detect the difference between the different levels of treatment for all traits. Difference among treatments means were compared by using Duncan test. All the analyses were performed using SAS statistical software.
Results and Discussion: The results showed that CO2at the concentrations of 750 and 1100 ppm affected significantly all the measured morphological properties except for plant height, root dry weight and physiological traits such as proline, N, and leaves relative water content. However, CO2concentration of 750 ppm had the highest effect on the studied parameters, so that mean dry weight of shoot, dry matter biomass and proline increased up to more than three times, and shoots and roots wet weight and wet matter biomass increased up to more than two times compared to control. The greatest diameter of the collar and the amount of nitrogen were observed at 750 ppm concentration. Concentrations of 750 and 1100 ppm caused a significant increasein the number of leaves (up to two times) and the height of stem compared to control. The increase observed inmorphological characteristics may be owing to photosynthesis stimulation during the experiment in CO2-elevated chamber. Soluble sugar as an important product of photosynthesis increased but the differences were not significant. Soluble sugar may be used for synthesis of morphological characteristics.
Conclusion: Growth of Melia azedarach in elevated-CO2 chamber strongly reacted to theincrease in photosynthesis. Therefore, based on the results of this study,CO2 elevation in glasshouse can be proposed for increasing the growth of plant. Consideringthe continued increaseinCO2 concentrations as a result ofcontinued use of fossil fuels in the word, cultivation of Melia azedarach in urban areas seems an appropriate option. The results of the present study also showed that there is not generally a significant difference between CO2concentrations of 750 and 1100 ppm in Melia azedarach. Therefore, it can be concluded that CO2 up to 750 ppm can cause a significant increase in the growth of this species, because no significant effect was observe between the two concentrations (750 and 1100 ppm) on growth factors.

کلیدواژه‌ها [English]

  • Carbon dioxide concentration
  • Melia azedarach
  • morphological traits
  • Physiological traits
1- Ainaworth E.A., Rogers A., Nelson R., and Long S. 2004.Testing the source-sink hypothesis of downregulation of photosynthesis in elevated CO2 in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology, 122: 85-94.
2- Allen L.H., Valle R.R., Mishoe J.W., and Jones J.W. 1994. Soybean Leaf gas-exchange responses to carbon dioxide and water stress. Agronomy Journal, 86: 625-636.
3- Balouchi H.R., Modarres Sanavy S.A.M., Emam Y., and Barzegar M. 2009. Effects of waterless stress, increasing carbon dioxide and ultraviolet on quantitative traits of durum wheat flag leaf (Triticum turgidum L. Var. durum Desf). Journal of Iranian Agriculture Plants Science, 40: 41-52. (in Persian)
4- Balouchi H.R., Modarres Sanavy S.A.M., Emam Y., and Dolatabadian A. 2009. Effect of CO2 Enrichment, Ultra-violet and Drought stress on some traits of Bread Wheat (Triticum aestivum L.). Journal of Agricultural Sciences and Natural Resources, 1-16. (in Persian with English abstract)
5- Bates L.S., Waldren R.P., and Teare I.D. 1973. Rapid determination of free proline for water stress student. Plant soil, 39: 205-207.
6- Beerling D.J., and Kelly C.K. 1997. Stomatal density responses of temperate woodland plants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data. American Journal of Botany, 84: 1572–1583.
7- Chen D.X., Hunt H.W., and Morgan J.A. 1996. Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change: comparison between model predictions and experimental data. Ecological Modeling, 87: 11-27.
8- Chen K., Hu G., Keutgen N., Janssens M.J., and Lenz F. 1999. Effects of NaCl salinity and CO2 enrichment on pepino (Solanum muricatum Ait.): II. Leaf photosynthetic properties and gas exchange. Scientia Horticulturae, 81: 43-56.
9- Chenarani Gh., Shoor M., Tehranifar A., Neamati S.H., and Davari Nejad Gh.H. 2014. Effect of light intensity and carbon dioxide on rooting of Croton (Codiaeum variegatum) cuttings. Journal of Horticultural Science, 28: 116-124. (in Persian)
10- Cheng W., Sakai H., Yagi K., and Hasegawa T. 2009. Interactions of elevated CO2 and night temperature on rice growth and yield. Agricultural and Forest meteorology, 149: 51-58.
11- Croonenborghs S., Ceusters J., Londers E., and De Proft M.P. 2009. Effect of elevated CO2 on growth and morphological characteristics of ornamental bromeliads. Scientia Horticulture, 121: 192-198.
12- Dehshiri A., Modarres Sanavy S.A.M., Rezaee H., and Shiranirad A.H. 2012. Effect of Elevated Concentration of Atmospheric Carbon Dioxide on Some traits of Three Rapeseed (Brassicc napus L.) Varieties under Saline Conditions. Journal of Seed and Seedling Breeding, 2-28: 35-52. (in Persian)
13- Donnelly A., Jones M.B., Burke J.I, and Schnieders B. 2000. Elevated CO2 provides protection from O3 induced photosynthetic damage and chlorophyll loss in flag leaves of spring wheat. Agriculture, Ecosystems and Environment, 80: 159-168.
14- Drake B.G., and Gonzàlez-Meler M.A. 1997. More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Biology, 48: 609-639.
15- Farshadfar E., and Mohammadi R. 2003.An Evaluation of Physiological Indices of Drought Tolerance in Agropyron Using Multiple Selection Index. Iranian Journal of Agricultural Science, 34: 635-646. (in Persian with English abstract)
16- Fritschi F.B., Boote K.J., Sollenberger L.E., Allen Jr L.H., and Sinclair T.R. 1999. Carbon dioxide and temperature effects on forage establishment: photosynthesis and biomass production. Global Change Biology, 5: 441-453.
17- Geissler N., Hussin S., and Koyro H.W. 2009. Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte (Aster tripolium L.). Environmental and Experimental Botany, 65: 220–231.
18- Hardy R.W.F., and Havelka U.D. 1976.Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybean in symbiotic nitrogen fixation in plants, Ed Nutman, p.s, cambrige university press, 421-439.
19- Heagle A.S., Miller J.E., and Booker F.L. 1998. Influence of ozone stress on soybean response to carbon dioxide enrichment: I. foliar properties. Crop Science, 38: 113-121.
20- Heienemann A.B., Maia A.H.N., Dourado-Neto D., Ingram K.T., and Hoogenboom G. 2006. Soybeen (Glycine max L.) Merr Growth and development response to CO2 enrichment under different temperature regimes. European Journal of Agronomy, 24: 52-61.
21- IPCC (Intergovernmental Panel on Climate Change), 2001. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), The Scientific Basis. Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
22- Jablonski L.M., Xianzhong W., and Curtis P.S. 2002. Plant reproduction under elevated CO2 conditions: a meta metaanalysis of reports on 79 crop and wild species. New Phytologist, 156: 9-26.
23- Jazireii M.H. 2010. Forestation in dryland.Tehran University Press.Third Edition. Tehran.
24- Kimball B.A., Kobayashi K., and Bindi M. 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77: 293-368.
25- Kim H.R., and You Y.H. 2010.The Effects of the Elevated CO2 Concentration and Increased Temperature on Growth, Yield and Physiological Responses of Rice (Oryza sativa L. cv. Junam). Advances in Bioresearch, 1: 46-50.
26- Kochert G. 1987. Carbohydrate determination by the phenol sulfuric acid method: 56-97.
27- Koocheki A., and Hosseini M. 2006.Climate Change and Global Crop Prodactivity. Ferdowsi University of Mashhad Publication, Mashhad.
28- Lichtenthaler H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Method Enzym, 148: 350-382.
29- Liu-Gitz L., Britz S.J., and Wergin W.P. 2000. Blue light inhibits stomatal development IB soybean isolines containing kaempferol 3-O-2G-glycosyl-gentiobioside (K9), a unique flavonoid glycoside. Plant Cell Environ, 23: 883–891.
30- Long S.P., Ainsworth E.A., Rogers A., and Ort D.R. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology, 55: 591–628.
31- Mauney J.R., Kimball B.A., Pinter P.J., Lamorte R.L., Lewin K.F., Nagy J., and Hendrey G.R. 1994. The free-air carbon dioxide enrichment (FACE) cotton project: A new field approach to assess the biological consequences of global change. Agricultural and Forest Meteorology, l70: 49-67.
32- Mavrogianopoulos G.N., Spanakis J., and Tsikalas P. 1999. Effect of Co2 enrichment and salinity on photosynthesis and yield in melon. Scientia Horticulture, 79: 51-63.
33- Mortensen L.M. 1986. Effect of relative humidity on growth and flowering of some greenhouse plants. Scientia Horticulturae, 29: 301-307.
34- Mortensen L.M. 1986. Effect of intermittent as compared to continuous CO2 enrichment on growth and flowering of Chrysanthemum X morifolium Ramat.and Saintpaulia ionantha H. Wendl. Scientia Horticulture, 29: 283-289.
35- Moutinho-Pereira J., Goncalves B., Bacelar E., Boaventura Cunha J., Cotinho J., Correal C.M. 2009. Effects of elevated Co2 on grapevine (Vitis vinifera L.): Physiological and yield attributes.Vitis, 48: 159-165.
36- Nasiri Mahalati M., Kochaki A.R., and Rezvani Moghadam P. 2002. The effect of global climate change on agricultural production. Ferdowsi University of Mashhad Press, Mashhad.
37- Niboyet A.L., Barthes B.A., Hungate X., Le Roux J.M.G., Bloor A., Ambroise S., Fontaine P.M., Price., and Leadley P.W. 2010. Responses of soil nitrogen cycling to the interactive effects of elevated CO2 and inorganic N supply. Plant and Soil, 327: 35-47.
38- Noggle G.R, and Fritz G.J. 1983. Introductory Plant Physiology.Prentice – Hall, Inc, EngleWood Cliffs, New Jersey.
39- Nowak R.S., Ellsworth D.S., and Smith S.D. 2004. Tansley Review: Functional responses of plants to elevated atmospheric CO2 – Do photosynthetic and productivity data from FACE experiments support early predictions?. New Phytologist, 162: 253-280.
40- Oberbauer S.F., Strain B.R, and Fetcher N. 1985.Effect of Co2 – enrichment on seedling physiology and growth of tropical tree species. Physiol Plant, 65: 352-356.
41- Pandey R., Chenhacko P.M.,.Choudhary M.L., Prasad K.V., and Madan P. 2007. Higher than optimum temperature under co2 enrichment influences stomata anatomical chracters in rose (Rosa hibrida). Scientia Horticulture, 113: 74-81.
42- Poorter H., Pot C.S. and Lambers H. 1988. The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and respiration of Plantago major. Physiol Plant, 73: 553-559.
43- Qin D.H., and Zhou G.S. 2006.Global Cycling. China Meteorological Press, Beijing (in Chinese). Journal of Environmental management, 85: 607- 615.
44- Rajapakse N.C., Clerak D.G., Kelly J.W., and Miller W.B. 1994. Carbohydrate status and postharvest leaf chlorosis of miniature roses as influenced by carbon dioxide enrichment. Postharvest Biology and Technology, 4: 271- 279.
45- Rogers H.H., and Dahlman R.C. 1993. Crop responses to CO2, enrichment.Vegetation, 104/105: 117-131.
46- Rogers H.H., Runion G.B., Krupa S.V., and Prior S.A. 1997. Plant response to atmospheric CO2 enrichment. In: Allen, J. R. (eds.), Advances in carbon dioxide effects research. ASA Special Publication no. 61.ASA.CSSA. Madison. WI, 1-34.
47- Sasaki H., Hara T., Ito S., Uehara N., Kim H.Y., Lieffering M., Okada M., and Kobayashi K. 2007. Effect of free-air CO2 enrichment on the storage of carbohydrate fixed at different stages in rice (Oryza sativa L.). Field Crop Research, 100: 24–31.
48- Shoor M., Behzadimoghadam M., and Goldani M. 2012. Study of rooting, some quantitative and anatomical traits in two species of Coleus in high concentrations of carbon dioxide. Journal of Horticultural Science, 26: 277-285. (in Persian)
49- Shoor M., Zargariyan S.M., and Bostani S. 2010. The effect of increasing carbon dioxide on anatomical and morphological traits of (Tagets tenuifolia) in greenhouse. Journal of Horticultural Science, 24: 128-135. (in Persian)
50- Torbert H.A., Prior S.A., Rogers H.H., and Runion G.B. 2004. Elevated atmospheric CO2 effects on N fertilization in grain sorghum and soybean. Field Crops Research, 88: 57-67.
51- Wilson P.W., Fred E.B., and Salmon M.R. 1993. Relation between carbon dioxide and elemental nitrogen assimilation in leguminous plants. Soil Science, 35: 145-165.
52- Zanetti S., Hartwing U.A., Luscher A., Hebeisen T., Frehner M., Fischer B.U., Hendrey G.R., Blum H., and Nosberger J. 1996. Stimulation of Symbiotic N2-fixation in (Trifolium repens L) under elevated atmospheric PCo2 in a grassland ecosystem. Plant physiol (USA), 112: 575-583.
53- Zavareh M. 2005. Modeling sesame (Sesamum indicum L.) growth and development.PhD Thesis from Faculty of Agriculture, Tehran University, Iran. (In Persian with English abstract).
54- Zhang G., Sakai H., Tokida T., Usui Y., Zhu C., Nakamura H., Yoshimoto M., Fukuoka M., Kobayashi K., and Hasegawa T. 2013. The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). Journal of Experimental Botany, 64: 3179–3188.
55- Ziska L.H., and Bunce J.A. 2006. Plant responses to raising atmospheric carbone dioxide. PP. 17-47. In: Morison, J.I.L. and M.D. Morecroft (Eds.), Plant Growth and Climate Change, Blackwell Publishing, Ltd., Oxford.
CAPTCHA Image