مطالعه سازگاری برخی ارقام و یک ژنوتیپ ایرانی آلبالو با استفاده از واکنش زنجیره‌ای پلیمراز و فلورسنس میکروسکوپی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه شاهد

2 دانشگاه شاهد تهران

چکیده

آلبالو (Prunus cerasus L.) متعلق به خانواده Rosaceae، زیر خانواده پرونوئیده، یکی از مهمترین میوه­های هسته­دار مناطق معتدله می­باشد. ایران بعد از کشورهای ترکیه و آمریکا سومین کشور تولید کننده آلبالو در دنیا است. اگرچه اکثر ارقام آلبالو خود­سازگار می­باشند ولی اخیراً ارقام خودناسازگار یا کمی خود­ناسازگار گزارش شده و به مرور زمان بر تعداد آن­ها  افزوده می­شود. در این مطالعه روابط خود و دگر(نا)سازگاری برخی ارقام و دو ژنوتیپ برتر ایرانی آلبالو، با استفاده از ردیابی نفوذ لوله ­گرده در خامه با میکروسکوپ فلورسنت، و روش PCR با آغازگرهای دیجنریت بررسی شد. ارقام شامل ارقام ’متئور‘، ’مونت مورنسی‘،’محلی‘،’مجارستانی دیررس‘ و یک ژنوتیپ برتر گزینش شده از مناطق مختلف ایران بویژه استان­های آذربایجان شرقی و غربی بودند. در مطالعه میکروسکوپی، ترکیب تلاقی­ها بر اساس همپوشانی گلدهی ارقام و ژنوتیپ انتخابی صورت گرفت. نتایج آزمایش نشان داد که در تلاقی‌ ’محلی‘ X ’مونت مورنسی‘ بیشترین تشکیل میوه نهایی (5/15 درصد) مشاهده گردید. درهمه تلاقی‌ها تعداد لوله گرده از کلاله تا ورودی تخمدان کاهش یافت. همچنین، نتایج مربوط به شناسایی آلل­های ناسازگاری نشان دادند که در هیچکدام از ارقام و ژنوتیپ مورد مطالعه تمامی آلل­ها یکسان نبودند و این نشانگر سازگاری همه آن­ها با همدیگر بود. بطور کلی نتایج هر دو روش همدیگر را تایید و نشان داد که همه ارقام و ژنوتیپ انتخابی را می­توان در احداث باغات آلبالو با هم کشت نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Compatibility Relationships of some Sour Cherry Cultivars and Genotypes Using PCR and Florescence Microscopy

نویسندگان [English]

  • A. Joulani 1
  • Y. Sharafi 2
  • J. Sabbaghpour Heris 2
1 Shahed University
2 Shahed University
چکیده [English]

Introduction: Sour cherry (Prunus cerasuc L.) is one of the most important stone fruit of Rosaceae family which have a high nutritional value. Based on FAO statistics, Iran was ranked the 3rd to 6th among the main sour cherry producer countries in the world. Most of the sour cherry cultivars are self-compatible, but self-incompatible cultivars have been reported currently. Allotetraploidy of sour cherry complicates the self-incompatibility segregation in the progeny, so this studies have been less accomplished in Iran. The sour cherry is an allotetraploid species which possibly stand up as a result of usual hybridization between the dwarf cherry P. fruticosa and sweet cherry P. avium. Similar to other species of the Prunus, the phenomenon of gametophytic self-incompatibility (GSI) happens in sour cherry. It prevents self-fertilization and facilitate fertilization with pollen of other genotypes within same species. Self-incompatibility consists of arresting pollen-tube growth in the pistil if the pollen tube contains the same S-allele that is present in the pistil. The phenomenon of self-incompatibility in plants of Rosaceae family is controlled by two genes at the S-locus. The specificity of the pistil is encoded by a gene responsible for the synthesis of the ribonuclease protein (S-RNase), whereas the specificity of the pollen is controlled by the gene encoding an F-box protein (S-haplotype-specific F-box protein – SFB) 3a). The tightly linked genetic unit of the pistil S-allele (SRNase) and pollen S-allele is called S-haplotype.
Materials and Methods: In the present study, pollen-pistil compatibility relationships among some sour cherry cultivars and selected genotypes were investigated by controlled pollination and pollen tube penetration by fluorescence microscopy. Cultivars were include ‘Meteor’, ‘Mont Morency’, ‘Majarestani’ and ‘Mahalli’ so, genotype1 were selected. After controlled pollination fruit setting was studied and the pollen tubes growth along the style was studied using fluorescent microscope. Crosses were selected based on synchronized flowering time among cultivars and genotypes and included ‘Mont Morency’ × ‘Meteor’, ‘Meteor’ × ‘Mahalli’, ‘Meteor’ × ‘Majarestani’, ‘Meteor’ × ‘Genotype 1’, ‘Mont Morency’ × ‘Mahalli’, ‘Mont Morency’ × ‘Majarestani’, ‘Mont Morency’ × ‘Genotype 1’, ‘Mahalli’ × ‘Majarestani’, ‘Mahalli’ × ‘Genotype 1’ and ‘Majarestani’ × ‘Genotype 1’, respectively.
For each cross, 2 branches were randomly selected in female cultivars in winter. On each branch, including 30 floral buds at ‘balloon stage’ were tagged and bagged to prevent the entrance of any foreign pollen. On the day of anthesis, ready-to-dehisce anthers were collected from male cultivar, maintained on a moist filter paper in petri plates at 4 ºC in refrigerator till they dehisce. Pollens from these anthers were used as a source of male gametes later. Once stigma turned receptive, cross-pollination treatments were carried out in the field as designed scheme for 12 successive days. After every 24 hrs. up to 120 hrs. post-pollination, 12 pistils per treatment were fixed in FAA (formaldehyde/glacial acetic acid/70% alcohol in the ratio of 1:1:18) for 24 hrs. Followed by washings with water to remove traces of alcohol, if any, and cleared in 5% KOH at 60 ºC for fluorescence microscopy. Staining regime, as described in Sabbaghpour et al. (2020) the number of pollen tubes in the upper and mid-parts of the style and in the ovary was employed to enable visualization of the pollen germination on the stigma. Percentage of pollen germination was determined as the proportion of pollen grains that germinated on the stigma to the total number present on a scale of 100. Pollen tube number at three levels was calculated as an average of 5 (n=10). For an easy understanding of growth pattern of pollen tubes inside the style and ovary, the stylar portion, which measures 1.8 ± 0.07 cm on an average, was divided into two parts: the middle and the base. A single, longitudinal incision was then carefully given on one portion of the style using a fine needle and made wide open. Pollen tubes inside the style were critically observed under fluorescence microscope at 100x magnification. Number of them was carefully recorded and data generated for different experimental sets.
Results and Discussion: Results showed that maximum pollen tube number penetrated to the ovary and final fruit set were observed in cross ‘Mahalli’בMajarestani’. Also, minimum pollen tube in the ovary and final fruit set were observed in ‘Meteor’בMahalli’ and ‘Meteor’בGenotype 1’ crosses.
Conclusion: Based on the obtained results cross-incompatibility was not observed among the studied cultivars and genotypes. Therefore, they could be planted in the sour cherry breeding programs and orchards establishment based on their blooming time.

کلیدواژه‌ها [English]

  • Florescent microscopy
  • Pollen
  • Pollination
  • Self-incompatibility
  • Sour cherry
1- Atlagić J., Terzić S., and Marjanović-Jeromela A. 2012. Staining and fluorescent microscopy methods for pollen viability determination in sunflower and other plant species. Industrial crops and products 35(1): 88-91.
2- Ayanoglu H., Bayazit S., Inan G., Bakir M., Akpinar AE Kazan K., and Ergul A. 2007. AFLP analysis of genetic diversity in Turkish green plum accessions (Prunus cerasifera L.) adapted to the Mediterranean region. Scientia Horticulterae 114: 263-267.
3- Chen X., Huairui Shu., and Xuesen Chen. 2004. Studies on self--incompatibility in stone fruit trees. Chinese Bulletin of Botany 21: 755-764.
4- Cropotova J., Tylewicz U., Cocci E., Romani S., and Dalla Rosa M. 2016. A novel fluorescence microscopy approach to estimate quality loss of stored fruit fillings as a result of browning. Food Chemistry 194: 175-183.
5- Dafni Amots., Michael Hesse., and Ettore Pacini. 2012. Pollen and pollination: Springer Science & Business Media.
6- Eftekhari M., and Sharafi Y. 2020. Microscopic study of fertilization and fruit set in apricot cultivars sprayed by zinc. Journal of Horticultural Plant Nutrition 2: 1-14.
7- Eftekhari M., and Sharafi Y. 2020. Microscopic study of the effect of Boron foliar application on pollen tube penetration and fruit set in apricot cultivars. Journal of Horticultural Plant Nutrition 3: 119-130.
8- Fahrni C.J. 2007. Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Current Opinion in Chemical Biology 11(2): 121-127.
9- FAO. 2018. FAO statistical database. http://apps.fao.org.(visited 10 january 2018)
10- Gu Chao., J Wu., Y-H Du., Y-N Yang., and S-L Zhang. 2013. Two different Prunus S fb alleles have the same function in the Self-incompatibility reaction. Plant Molecular Biology Reporter 31(20): 425-34.
11- Gu Chao, Jun Wu., Shu-Jun Zhang., Ya-Nan Yang., Hua-Qing Wu., M Awais Khan., Shao-Ling Zhang, and Qing-Zhong Liu. 2011. Molecular analysis of eight S fb alleles and a new S fb-like gene in Prunus Pseudocerasus and Prunus speciosa. Tree genetics & Genomes 7(5): 891-902.
12- Halasz J., Hegdus A. and pedryec A. 2006. Review of the molecular background of self-incompatibility in Rosaceae fruit trees. Journal of Horticultural Sciences 12: 7-19.
13- Hauk N., Yamane H., Tao R. and Iezzoni A.F. 2002. Self-compatibility and incompatibility in tetraploid sour cherry (Prunus cerasus L.). Sex Plant Reproduction 16: 14-19.
14- Hegedűs A., Lenart J., and Halasz J. 2012. Sexual incompatibility in Rosaceae fruit tree species: Molecular interactions and evolutionary dynamics. Biologia Plantarum 56(2): 201-09.
15- Hegedus A., Szabo Z., Nyeki J., Halasz J. and Pedryec A. 2006. Molecular analysis of S-haplotypes in peach, a self-compatible Prunus species. Journal of American Society. Horticultural Sciences 131: 738-743.
16- Kubitscheck U. 2017. Fluorescence microscopy: from principles to biological applications: John Wiley & Sons.
17- Lansari A., and Iezzoni A. 1990. A preliminary analysis of self incompatibility in Sour cherry, Hortscience 25(12): 1636-1638.
18- Lech W. and Tylus K. 1983. Pollination, fertilization, and fruit set of some sour cherry varieties. Acta Horticulturae 139: 33–39.
19- Lisek A., Danuta Kucharska, Agnieszka Głowacka., and Elżbieta Rozpara. 2017. Identification of S-haplotypes of European cultivars of sour cherry, The Journal of Horticultural Science and Biotechnology 34(12): 163-168.
20- Losada J.M. and Herrero M. 2014. Glycoprotein composition along the pistil of (Malusdomestica) and the modulation of pollen tube growth. BMC Plant Biology 14(1): 1-7.
21- Mable B.K. 2004. Polyploidy and self-compatibility: Is there an association? New Phytologist 162: 803–811.
22- Makovics-Zsohar N., and Halasz J. 2016. Self-incompatibility system in polyploid fruit tree species- A review, The International Journal of Plant Reproductive Biology 8(1): 24-33.
23- Mularczyk-Oliwa M., Bombalska A., Kaliszewski M., Włodarski M., Kopczyński K., Kwaśny M., Szpakowska M., and Trafny E.A. 2012. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97: 246-254.
24- Nathanael R., Hauck, Hisayo Yamane, Ryutaro Tao., and Amy F. Iezzoni. 2006. Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic Self-incompatibility in tetraploid Prunus. Genetics Society of America 172: 1191–1198.
25- Ortega E., Martinez-Garca P., Dicenta F., Boskovic R. and Tobutt K.R. 2002. Study of self-compatibility in almond progenies from self-fertilization by florescence microscopy and stylar ribonuclease assay. Acta Horticulturae 591: 229-232.
26- Radunić M., Jazbec A., Ercisli S., Čmelik Z., and Ban S.G. 2017. Pollen-pistil interaction influence on the fruit set of sweet cherry. Scientia Horticulturae 224: 358-366.
27- Sabbaghpoor Heris J., Sharafi Y., and Buzari B. 2020 Investigation of the Compatibility among some Sour Cherry Cultivars and Genotypes in Iran. Iranian Journal of Horticultural Science and Technology 21(1): 47–58.
28- Salesses G., and Bonnet A. 1994. Citological studies of tetra-, hepta-, and octoploid interspecific hybrids between P. cerasifera, P. spinosa and P. domestica. Acta Horticulturae 359: 26–32.
29- Schneckenburger H. 2005. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Current Opinion in Biotechnology 16(1): 13-18.
30- Sedgley M. 1990. Flowering of deciduous perennial fruit crops. Horticultural Reviews 12: 223-264.
31- Sharafi Y. 2019. Effects of zinc on pollen gamete penetration to pistils in some apple crosses assessed by fluorescence microscopy. Caryologia 72: 63-73.
32- Sharafi Y., and Raina M. 2020. Effect of boron on pollen attributes in different cultivars of Malus domestica L. National Academy Science Letters 43(4): 399-403.
33- Sharafi Y., Talebi S.F., and Talei D. 2017. Effects of heavy metals on male gametes of sweet cherry. Caryologia 70: 166-173.
34- Sharafi Y., Talebi S.F., and Talei D. 2017. Effects of heavy metals on male gametes of sweet cherry, Caryologia 70: 166-173.
35- Sutherland Bruce G., Kenneth R., Tobutt, and Timothy P Robbins. 2008. Trans-specific S-Rnase and S fb alleles in Prunus Self-incompatibility haplotypes. Molecular Genetics and Genomics 279(95): 65-78.
36- Tao Ryutaro, Akiko Watari., Toshio Hanada., Tsuyoshi Habu., Hideaki Y., Masami Y., and Hisayo Y. 2007. Self-compatible peach (Prunus Persica) has mutant versions of the S haplotypes found in Self-incompatible Prunus Species. Plant Molecular Biology 63(1): 109-23.
37- Tatsuya Tsukamoto., Nathanael R., Hauck, Ryutaro Tao, Ning Jiang and Amy Iezzoni F. 2010. Molecular and genetic analyses of four nonfunctional S haplotype variants derived from a common ancestral S haplotype identified in sour cherry (Prunus cerasus L.). Genetics Society of America 184: 411–427.
38- Tobutt K.R., Boskovic R., Cerovic´·R., Sonneveld T., and Rusic D. 2004. Identification of incompatibility alleles in the tetraploid species sour cherry. Theor Appl Genet 108: 775–785.
39- Tsukamoto T., Hauck N.R., Tao R., Jiang N., and Iezzoni A. F. 2006. Molecular characterization of three nonfunctional haplotypes in sour cherry (Prunus cerasus). Plant Molecular Biology 62: 371–383.
40- Tsukamoto T., Hauck N.R., Tao R., Jiang N., and Iezzoni A.F. 2008. Genetic and molecular characterization of three nonfunctional haplotypes in sour cherry (Prunus cerasus). Journal of Experimental Botany 59(11): 3169-3185.
41- Tsukamoto T., Hauck N.R., Tao R., Jiang N., and Iezzoni A.F. 2008. Molecular and genetic analyses of four nonfunctional S haplotype variants derived from a common ancestral S haplotype identified in sour cherry (Prunus cerasus L.). Genetics Society of America 411-427.
42- Yamane H., Kazuo Ikeda., Nathanael R., Hauck, Amy F. Iezzoni and Ryutaro Tao. 2003. Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. Journal of Experimental Botany 54(392): 2431-2437.
43- Yeloff D., and Hunt C. 2005. Fluorescence microscopy of pollen and spores: a tool for investigating environmental change. Review of Palaeobotany and Palynology 133(3): 203-219.