کاربرد برگی اسید هیومیک روی انباشت مواد مغذی در برگ و میوه‌ی توت‌فرنگی رقم ’سلوا‘ تحت بسترهای کشت مختلف

نوع مقاله : مقالات پژوهشی

نویسنده

دانشیار، گروه باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت

10.22067/jhs.2021.39616

چکیده

در سال­های اخیر، استفاده از اسید هیومیک برای ارتقای ویژگی­های رویشی و زایشی گیاهان زراعی و باغی عمومی شده است. یک آزمایش گلدانی برای بررسی اثر کاربرد برگی اسید هیومیک و بسترهای کشت مختلف روی جذب و انباشت مواد مغذی در برگ و میوه­ی توت­فرنگی رقم ’سلوا‘ (Fragaria ×ananassa Duch. cv. ‘Selva’) انجام شد. غلظت­های مختلف اسید هیومیک (صفر، 300، 600 و 1000 میلی­گرم بر لیتر) به­صورت اسپری برگی در دو زمان (اواخر فروردین و اواخر اردیبهشت) روی توت­فرنگی کاشته­شده در بسترهای مختلف (خاک معمولی حاوی خاک باغچه، کود گاوی خشک­شده و ماسه بادی به­نسبت مساوی و مخلوط خاک معمولی همراه با سبوس برنج، پرلیت و ضایعات چای) به­کار گرفته شدند. نتایج نشان داد که بیشترین مقدار پتاسیم (518 میلی­گرم بر لیتر) و فسفر (84/4 میلی­گرم بر لیتر) میوه در گیاهان تیمارشده با 1000 میلی­گرم بر لیتر اسید هیومیک کاشته­شده در بستر مخلوط خاک معمولی همراه با سبوس برنج به­دست آمد. بیشترین مقدار پتاسیم برگ (50/48 میلی­گرم بر لیتر) در گیاهان تیمارشده با 600 میلی­گرم بر لیتر اسید هیومیک کاشته­شده در بستر مخلوط خاک معمولی و بیشترین مقدار فسفر برگ (32/6 میلی­گرم بر لیتر) در بستر مخلوط خاک معمولی همراه با سبوس برنج به­دست آمد. بیشترین مقدار ازت (35/5 درصد) میوه در گیاهان کاشته­شده در بستر مخلوط خاک معمولی همراه با ضایعات چای بدون کاربرد برگی اسید هیومیک به­دست آمد. گیاهان رشدیافته در این بستر کشت همراه با تیمار 1000 میلی­گرم بر لیتر اسید هیومیک بیشترین مقدار ازت برگ (47/5 درصد) را داشتند. از آنجایی که مهم­ترین عناصر برای افزایش کیفیت میوه­ی توت­فرنگی به­ترتیب پتاسیم، فسفر و ازت است، استفاده از 1000 میلی­گرم بر لیتر اسید هیومیک کاشته­شده در بستر مخلوط خاک معمولی همراه با سبوس برنج توصیه می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Foliar Application of Humic Acid on Nutrition Accumulation in Leaf and Fruit of Strawberry cv. Selva under Different Cultivation Beds

نویسنده [English]

  • B. Kaviani
Associate Professor, Department of Horticulture, Rasht Branch, Islamic Azad University, Rasht
چکیده [English]

Introduction: The use of biofertilizers instead of chemical fertilizers has an effective role in increasing the health of plants, animals and humans and reducing environmental pollution. Biofertilizers are gradually being replaced by chemical fertilizers. Strawberry is a fruit with high nutritional value. Choosing the right nutritional conditions such as fertilizers and suitable cultivation beds to achieve high quantitative and qualitative yield in this plant is inevitable. In recent years, the use of humic acid has been common in enhancing the vegetative and generative characteristics of crops. Humic acid is a rich source of potassium, phosphorus and nitrogen. The method of application of humic acid has an effective role in improving the quantitative and qualitative characteristics of plants. The leaf application of humic acid was effective in increasing the amount of phosphorus, potassium and nitrogen. The amount of potassium and phosphorus in strawberry fruit is more than other elements. Combining some cultivation beds (perlite and composts) and fertilizers such as agricultural waste (rice bran and tea wastes) into soil cultivation beds have an effective role in improving the quantity and quality of plants.
Materials and Methods: A pot experiment was conducted to evaluate the effect of foliar application of humic acid and different cultivation beds on nutrition uptake of strawberry. Different concentrations of humic acid (0, 300, 600, and 1000 mg.l−1) were applied as foliar application in two steps (late March and late April) on strawberry cultivated in different beds (usual soil, usual soil + rice bran, perlite, or tea wastes). This study was carried out as two factorial experiment in completely randomized design. Soil nitrogen, phosphorus and potassium, soil pH and electrical conductivity and leaf and fruit nitrogen, phosphorus and potassium content were measured. Measurement of nitrogen, phosphorus and potassium was carried out by Kjehldal, spectrophotometry and flame photometry, respectively.
Results and Discussion: The interaction effect of humic acid ×cultivation beds on nitrogen and phosphorus content of leaves and fruits was significant at 1% of probability level and on fruit potassium at 5% of probability level. The interaction of these two factors on leaf potassium was non-significant. The results of comparing the mean comparison of humic acid and cultivation beds on soil elements showed that the highest amount of nitrogen was obtained in the treatment of 600 mg.l−1 humic acid and in the cultivation bed of usual soil+rice bran. The highest amount of phosphorus was obtained in the treatment of 1000 mg.l−1 humic acid and the cultivation bed of usual soil + tea wastes. The highest amount of potassium was obtained in the treatment of 600 mg.l−1 humic acid and in the cultivation bed of usual soil + tea wastes and the lowest one was obtained in the same bed without humic acid. Results showed that the highest potassium content (518 mg.l−1), and phosphorus (4.84 mg.l−1) of fruit were obtained in plants treated with 1000 mg.l−1 humic acid cultivated in usual soil + rice bran. The highest nitrogen content of fruit was obtained in plants cultivated in usual soil +tea wastes. The plants grown in this cultivation bed with humic acid application at 1000 mg.l−1 had maximum content of leaf nitrogen (5.47%). The highest content of leaf potassium (4.50 mg.l−1) and phosphorus (6.32 mg.l−1) were obtained in plants treated with 600 mg.l−1 humic acid in the cultivation beds of usual soil and usual soil + rice bran, respectively. The application of humic acid at 1000 mg.l−1 and using usual soil+rice bran as bed is recommended for strawberries production as potassium, phosphorus and nitrogen are the most important elements for increasing the quality of strawberry fruits , respectively.  A positive association has been reported between the use of humic acid and the increase in growth, yield and product quality in strawberries and other plants. Humic acid can improve quantitative and qualitative production of crops by providing more available essential elements and increasing plant resistance to various biological and non-biological stresses.
Conclusion: Strawberries are widely cultivated worldwide due to their high nutritional value. Chemical fertilizers have been used as a way to increase crop yields, but have led to problems such as nitrate accumulation, short pot life, and poor quality and environmental pollution. Therefore, organic fertilizers have been recommended. A stimulating effect of humic acid on biomass production and plant growth is to increase the uptake of nitrogen, phosphorus and potassium. Proper cultivation bed plays an important role in the optimal growth and development of plants. According the result of this study, the use of beds containing agricultural waste and foliar application of humic acid increased the growth, yield and quality of strawberry fruit.

کلیدواژه‌ها [English]

  • Fragaria ×
  • ananassa
  • Fruit quality
  • Greenhouse products
  • Nutrition uptake
  •  

    • Ameri A., and Tehranifar A. 2012. Effect of humic acid on nutrient uptake and physiological characteristic Fragaria ananassa Camarosa. Journal of Biological and Environmental Science 6(16): 77-79.
    • Arancon N.Q., Edwards C.A., Bierman P., Metzger J.D., Lee S., and Welch C. 2004a. Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries. Pedobiology 47: 731-735.
    • Arancon N.Q., Lee S., Edwards C.A., and Atiyeh R. 2004c. Effects of humic acids derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants. Pedobiology 47: 741-744.
    • Arancon N.Q., Edwards C.A., Bierman P., Welch C., and Metzger J.D. 2004b. Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresource Technology 93(2): 145-153.
    • Atiyeh R.M., Lee S., Edwards C.A., Arancon N.Q., and Metzger J.D. 2002. The influence of humic acid derived from earthworm-processed organic wastes on plant growth. Bioresource Technology 84: 7-14.
    • Baldotto L.E.B., Baldotto M.A., Canellas L.P., Bressan-Smith R., and Olivares F.L. 2010. Growth promotion of pineapple ‘Victoria’ by humic acids and Burkholderia during acclimatization. Revista Brasileira de Ciênciado Solo 34: 1593-1600.
    • Canellas L.P., Olivares F.L., Aguiar N.O., Jones D.L., Nebbioso A., Mazzei P., and Piccolo A. 2015. Humic and fulvic acids as bio stimulants in horticulture. Scientia Horticulturae 196: 15-27.
    • Cenellas L.P., Olivares F.L., Okorokova-Facanha A.L., and Facanha A.R. 2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H-ATPase activity in maize roots. Plant Physiology 130(4): 1951–1957.
    • Chen Y., Clapp C.E., and Magen, H. 2004. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Science and Plant Nutrition 50: 1089-1095.
    • Colquhouna T.A., Levina L.A., Moskowitzb H.R., Whitakerc V.M., Clarka D.G., and Foltac K.M. 2012. Framing the perfect strawberry: An exercise in consumer-assisted selection of fruit crops. Journal of Berry Research 2: 45–61.
    • Dilmaghani M.R., and Hemmaty S. 2011. Effect of different substrates on nutrients content, yield and quality of strawberry cv. Selva in soilless culture. Journal of Science and Technology of Greenhouse Culture 2(7): 1-8. (In Persian)
    • Dursun A., Guvenc I., and Turan M. 2002. Effects of different levels of humic acid on seedling growth and macro- and micro-nutrient contents of tomato and eggplant. Acta Agrobotanica 56: 81-88.
    • Ehyaei M., and Behbehanizadeh A.A. 1993. Description of Soil Chemical Analysis Methods. Publications of Soil and Water Research Institute, Iran, vol. 892. (In Persian)
    • Ehyaei M., and Behbehanizadeh A.A. 1996. Chemical Methods of Plant Analysis. Publications of Soil and Water Research Institute, Iran, vol. 982. (In Persian)
    • Eshghi S., and Garazhian M. 2015. Improving growth, yield and fruit quality of strawberry by foliar and soil drench applications of humic acid. Iran Agricultural Research 34(1): 14-20.
    • Hafez M.M. 2004. Effect of some sources of nitrogen fertilizer and concentration of humic acid on the productivity of squash plant. Egyptian Journal of Applied Science 19: 293-309.
    • Hancock J.F. 1999. Strawberries. University Press, Cambridge, pp. 237.
    • Hartwigson J.A., and Evans M.R. 2000. Humic acid seed and substrate treatments promote seedling root development. HortScience 35(7): 1231-1233.
    • Hosseini Farahi M., Aboutalebi A., Eshghi S., Dastyaran M., and Yosefi F. 2013. Foliar application of humic acid on quantitative and qualitative characteristics of aromas strawberry in soilless culture. Agricultural Communications 1(1): 13-16.
    • Khaled H., and Hassan A.F. 2011. Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research 6(1): 21–29.
    • Khodamoradi P., Amiri J., and Dovlati B. 2018. Effect of humic acid on some morphological and physiological characteristics of strawberry (Fragaria × ananassa cv. Sabrina) under salinity stress. Pomology Research 2(2): 109-135. (In Persian)
    • Li Y., Fang F., Wei J., Wu X., Cui R., Li G., Zheng F., and Tan D. 2019. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific Reports 9: 12014.
    • Mart I. 2007. Fertilizers, organic fertilizers, plant and agricultural fertilizers. Agro and Food Business Newsletter. pp: 1-4.
    • Nardi S., Carletti P., Pizzeghello D., and Muscolo A. 2009. Biological activities of humic substances. pp. 102–119. In: Senesi N., Xing B., and Huang P.M. (Eds.), Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, Wiley, Hoboken.
    • Nardi S., Pizzeghello D., Muscolo A., and Vianello A. 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry 34: 1527-1536.
    • Neri D., Bonanomi G., Cozzolino E., Zucconi F. 1998. Studi sugli apporti di sostanza organica nel fragoleto. Frutticoltura 5: 47-54.
    • Neri D., Lodolini E.M., Savini G., Sabbatini P., Bonanomi G., Zucconi F. 2002. Foliar application of humic acid on strawberry (cv. Onda). Acta Horticulturae 594: 35.
    • Nikbakht A., Kafi M., Babalar M., Xia Y.P., Luo A., and Etemadi, N. 2008. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of Gerbera. Journal of Plant Nutrition 31: 2155–2167.
    • Panuccio M.R., Muscolo A., and Nardi S. 2001. Effect of humic substances on nitrogen uptake and assimilation in two species of Pinus. Journal of Plant Nutrition 24(4-5): 693-704.
    • Pilanali N., and Kaplan M. 2003. Investigation of effects on nutrient uptake of humic acid applications of different forms to strawberry plant. Journal of Plant Nutrition 26: 835–843.
    • Ozdamarullu H.U., Nlu H., Karakurt Y., and Padem H. 2011. Changes in fruit yield and quality in response to foliar and soil humic acid application in cucumber. Scientific Research and Essays 6(13): 2800-2803.
    • Rachid A.F., Bader B.R., and Al-Alawy H.H. 2020. Effect of foliar application of humic acid and Nanocalcium on some growth, production, and photosynthetic pigments of cauliflower (Brassica oleracea Botrytis) planted in calcareous soil. Plant Archives 20: 32-37.
    • Sapei L., and Hwa L. 2014. Study on the kinetics of vitamin C degradation in fresh strawberry juices. Proced Chemistry 9: 62-68.
    • Sharifi A., Ghaderi N., Khorshidi J., and Javadi T. 2018. Effect of culture media type and different concentrations of humic acid on yield components and some biochemical characteristics of Fragaria × ananassa cv. Aromas. Iranian Journal of Horticultural Science and Technology 19(4): 419-432. (In Persian)
    • Shehata S., Gharib A., Mohamed A.A., El-Mogy M., Abdel Gawad K.f., and Shalaby E.A. 2011. Influence of compost, amino and humic acids on the growth, and yield and chemical parameters of strawberries. Journal of Medicinal Plants Research 5(11): 2304-2308.
    • Stevenson F.J. 1994. Humus Chemistry: Genesis, Composition, Reaction. 2nd Edition, John Wiley & Sons, Inc., New York, p. 36.
    • Theunissen J., Ndakidemi P.A., and Laubscher C.P. 2010. Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of Physical Science 5(13): 1964-1973.
    • Turhan E., and Atilla E. 2004. Effect of chloride application and different growth media on ionic composition in strawberry plant. Journal of Plant Nutrition 27: 1653-1665.
    • Turkmen O., Dursun A., Turan M., and Erdinc C. 2004. Calcium and humic acid affect seed germination, growth and nutrient content of tomato (Lycopersicones culentum ) seedlings under saline soil conditions. Soil and Plant Science 54: 168-174.
    • Yildrim E. 2007. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agriculturæ Scandinavica, Section B - Soil & Plant Science 57: 182-186.
    • Zaky M.H., Zoah E.L., and Ahmed M.E. 2006. Effects of humic acids on growth and productivity of bean plants grown under plastic low tunnels and open field. Egyptian Journal of Applied Sciences 21(4): 582-596.
    • Zandonadi D.B., Canellas L.P., and Facanha A.R. 2007. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225: 1583-1595.
    • Zimmer G. 2004. Humates and humic substances. National Journal Sustainable Agricultural 34(1): 1-2.