اثر پوشش‌دهی کیتوسان و ژل آلوئه‌ورا بر شاخص‌های کیفیت و عمر انبارمانی انگور ’عسگری‘

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشگاه لرستان، خرم آباد

2 فیزیولوژی تولید و پس از برداشت گیاهان باغی، علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان

3 گروه باغبانی، دانشکده کشاورزی، دانشگاه لرستان

چکیده

میوه انگور در مراحل پس از برداشت، به دلیل نرم شدن بافت، بسیار فسادپذیر می‌باشد که همین امر عمر پس از برداشت آن را کوتاه می‌کند. پوشش‌های خوراکی مانند کیتوسان و ژل آلوئه‌ورا با ایجاد ساختار محافظت کننده در برابر آسیب‌های مکانیکی و تغییر اتمسفر درونی بافت، می‌توانند کیفیت میوه‌ها را افزایش دهند. به همین منظور، در این بررسی اثر محلول‌پاشی کیتوسان (در سه غلظت صفر، 2 و 3 درصد) قبل از برداشت و ژل آلوئه‌ورا (صفر، 25 و 33 درصد) بعد از برداشت، بر کیفیت و ماندگاری میوه انگور رقم عسگری در پنج زمان مختلف (صفر، 7، 14، 21 و 28 روز پس از برداشت) در دمای 4 درجه سانتی‌گراد مورد ارزیابی قرار گرفت. نتایج تجزیه واریانس نشان دهنده معنی‌دار بودن اثر تیمار و زمان انبارمانی بر صفات مورد نظر در سطح یک درصد بود. میوه‌های تیمار شده با کیتوسان و ژل آلوئه‌ورا دارای سفتی بافت، شاخص طعم، محتوای فنلی، فعالیت آنتی‌اکسیدانی و اسیدهای قابل تیتراسیون بالاتر و شاخص پوسیدگی و اسیدیته کم‌تر از شاهد بودند. بالاترین میزان محتوای فنل، آنتی‌اکسیدان، شاخص طعم و اسیدیته قابل تیتراسیون در هر پنج زمان اندازه گیری متعلق به تیمارهای کیتوسان 2 درصد به همراه هر دو غلظت ژل آلوئه‌ورا (25 و 33 درصد) و کم‌ترین میزان مربوط به تیمار شاهد بود. در تیمار شاهد، در مدت زمان انبارمانی درصد شاخص پوسیدگی افزایش یافت و در انگورهای تیمار شده با کیتوسان و ژل آلوئه‌ورا روند پوسیدگی کندتر بود و کم‌ترین میزان پوسیدگی در تیمار کیتوسان 2 درصد به همراه ژل آلوئه‌ورا در روز 14ام مشاهده شد. به طور کلی، بر اساس نتایج به دست آمده مشاهده شد که کاربرد قبل از برداشت کیتوسان و پس از برداشت ژل آلوئه‌ورا، عمر پس از برداشت انگور ’عسگری‘ را افزایش داد و موجب بهبود صفات کیفی در آن شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Chitosan and Aloe vera Gel Coating on Quality Parameters and Storage Life of Vitis vinifera L. cv. ‘Asgari’ Grapes

نویسندگان [English]

  • A. Ehtesham Nia 1
  • Sh. Taghipour 2
  • S. Siahmansour 3
1 Horticulture Department, Lorestan University
2 Production and Post-harvest Physiology of Horticulturalal Plants, Horticultural Sciences, Faculty of Agriculture, Lorestan University, Iran
3 Department of Horticultural science, faculty of Agricultural Lorestan university
چکیده [English]

Introduction
While grapes are considered as non-climacteric fruits, during the post-harvest stages, due to the softening of the tissue, it is very prone to decay, which shortens its post-harvest life. Today, due to the desire of consumers to use high quality food, the use of biodegradable films and coatings with antimicrobial properties, is a suitable alternative to synthetic preservatives, in order to maintain food security and prevent wastage of significant capital. Edible coatings are edible thin layers that are used to increase the shelf life and quality of fruits. This material increases the quality and health of the product by creating a semi-permeable barrier to water vapor and oxygen and carbon dioxide gases between the product and the environment, and to prevent anaerobic respiration, it absorbs a certain amount of gases and to this Sequence increases product shelf life. One of the most important ways to increase the shelf life and maintain the quality of agricultural products, especially fruits, is the use of edible coatings on the crop surface. Chitosan is one of the most important natural derivatives of chitin, of which about 50% of its acetyl’s groups have been removed. Due to the fact that Aloe vera gel has no taste and odor, can be considered a good option as a cover for fruits after harvest and due to its elasticity and strength solution in water, as a suitable layer on the product. Located and protects the fruit from mechanical damage and moisture loss.
 
Material and Methods
 In this study, 12-year-old mature grape trees of ‘Asgari’ cultivar in the scaffolding garden of Abestan region of Khorramabad city in 1398 were studied. In the pre-harvest stage, chitosan was sprayed on the tree and in the post-harvest stage, Aloe vera gel was applied by dipping the fruit in Aloe vera gel in the laboratory. After treatment, the fruits were stored in the refrigerator at a temperature of 4 ± 0.5 ° C and were examined at different time stages for quantitative and qualitative characteristics of the fruit. 20 identical grape trees (in terms of fruit size and load, with 50 to 70 annual branches in 8-14 buds) selected and grape clusters with different concentrations of chitosan (control (distilled water), 2 and 3 Percentage of chitosan) at different stages of growth (fruit set), 35 and 50 days later) were sprayed directly with 4 liters per vine, by hand sprayer (2 ml Tween 80% was added as the active surfactant). For this stage, immediately after harvesting the grapes, take them to the laboratory and immerse them in concentrations (zero, 25 and 33%) of Aloe vera gel for 10 to 20 seconds and then in the air. They dried. Then, grape fruits weighing about 360-300 g in each experimental unit were stored for 28 days at 4 ° C and examined. This study was performed as a factorial experiment (2 factors) in a completely randomized design with three replications. The first factor is the effect of the treatments studied in seven levels including: control, 2% chitosan (CTS 2%), 3% chitosan (CTS 3%), chitosan 2% + Aloe vera gel 25% (AVG 25% + CTS 2%), chitosan 3% + Aloe vera gel 25% (AVG 25% + CTS 3%), 2% chitosan + 33% Aloe vera gel (AVG 33% + CTS 2%), chitosan 3% + Aloe vera gel 33% (AVG 33% + CTS 3%) and the second factor was storage time at five levels (zero, 7, 14, 21 and 28 days after harvest). Data analysis was performed using SAS software and a significant difference between treatments for each trait with a minimum significant difference at the probability level = 0.05 α was determined.
 
Results and Discussion
 The results of analysis of variance showed that the effect of treatment and storage time on the desired traits was significant at the level of one percent. Fruits treated with chitosan and Aloe vera gel had higher texture firmness, taste index, phenolic content, antioxidant activity and titratable acids and caries index and pH were lower than the control. The highest content of phenol, antioxidant, flavor index and titratable acidity in all five measurement times belonged to 2% chitosan treatments with both concentrations of Aloe vera gel (25 and 33%) and the lowest amount belonged to the control treatment. In control treatment, the percentage of caries index increased during storage and in grapes treated with chitosan and Aloe vera gel, the caries process was slower and the lowest rate of caries was observed in 2% chitosan treatment with aloe vera gel on the 14th day. In general, it was observed that pre-harvest application of chitosan and post-harvest Aloe vera gel increase the post-harvest life of ‘Asgari’ grapes and improve its quality traits. Chitosan creates a barrier with selective permeability to oxygen and carbon dioxide gases, and by placing carbon dioxide at a higher level and reducing oxygen, it creates a modified atmosphere around the fruit, which reduces respiration and ethylene production. As a result, it reduces the aging process and reduces the consumption of organic acids and sugars and prevents the increase of pH. Low pH prevents browning of the fruit due to the activity of catechins and chlorogenic acid enzymes. Aloe vera gel coating maintains and increases the antioxidant capacity of the whole fruit by reducing fruit juice loss, reducing respiration, reducing ethylene production and delaying aging.
 
Conclusion
 The combined treatment of chitosan 2% and Aloe vera gel (25 and 33%) increased fruit firmness, titratable acidity, taste index, total phenol content and antioxidant activity of grapes and reduced pH and caries index. Application of these treatments increased the post-harvest life of ‘Asgari’ grapes by 14 days, so it can be stated that the use of chitosan in the pre-harvest stage and the use of Aloe vera gel in the post-harvest stage as biodegradable and natural compounds to increase Shelf life of ‘Asgari’ grape fruit is recommended.

کلیدواژه‌ها [English]

  • Antioxidant
  • Decay index
  • Natural coating
  • Total phenol content
  1. Asadi, , Beig Mohamadi, Z., & Mirmajidi, A. (2020). Investigate of the effect of evaluation of the effect of food coating containing Spirulina platensis, chitosan and gelatin on physicochemical, sensory and nutritional properties of dried kiwi. Food Science and Technology, 102(17): 68-53.‎ https://doi.org/10.52547/fsct.17.102.53
  2. Bautista-Banos, , Hernandez-Lopez, M., Bosquez-Molina, E., & Wilson, C.L. (2003). Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22, 1087-1092. https://doi.org/10.1016/S0261-2194(03)00117-0
  3. Bill, , Sivakumar, D., Korsten, L., & Thompson, A.K. (2014). The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Protection, 64, 159-167. https://doi.org/10.1016/j.cropro.2014.06.015
  4. Cheung, , Ng, T., Wong, J., & Chan, W. (2015). Chitosan an update on potential biomedical and pharmaceutical applications. Marine Drugs, 13(8), 51-56. https://doi.org/10.3390/md13085156
  5. Choi, , & Chung, M.H. (2003). A review on the relationship between Aloe vera component and their biologic effects. Seminars in Integrative Medicine, 1, 53-62. https://doi.org/10.1016/S1543-1150(03)00005-X
  6. Corbo, R., Speranza, B., Campaniello, D., D’Amato, D., & Sinigaglia, M. (2010). Fresh-cut fruits preservation: current status and emerging technologies. Microbial Biotechnology, 2, 1143-1154.
  7. Dalia, , Sanchez-Machado, J., & Sanches-Silva, A. (2017). Aleo vera: Ancient knowledge with new frontirers. Trends in Food Science and Technology, 61, 94–102. https://doi.org/10.1016/j.tifs.2016.12.005
  8. Diaz-Mula, H.M., Zapata, P.J., Guillen, F., Valverde, J.M., Valero, D., & Serrano, M. (2011). Modified atmosphere packaging of yellow and purple plum cultivars. Postharvest Biology and Technology, 61, 110-116. https://doi.org/10.1016/j.postharvbio.2011.02.010
  9. Ding, K., Chachin, K., Ueda, Y., Wang, C.Y., Imahoria, Y., & Chien, Y.W. (2002). Modified atmosphere packaging maintains postharvest quality of loquat fruit. Postharvest Biology and Technology, 24, 341-348. https://doi.org/10.1016/S0925-5214(01)00148-X
  10. Ehtesham Nia, A., Taghipour, S., & Siahmansour, S. (2021). Pre-harvest application of chitosan and postharvest Aloe vera gel coating enhances quality of table grape (Vitis vinifera cv. ‘Yaghouti’) during postharvest period. Food Chemistry, 347, 129012. https://doi.org/10.1016/j.foodchem.2021.129012
  11. Ehtesham nia, A., Taghipour, S.H., & Siahmansour, S. (2020). Effect of putrescin preharvest using and Aloe vera gel postharvest using on quality and shelf life of grape. Journal of Horticultural Sciences (Agricultural Sciences and Industries), 35(1), 116-103. https://doi.org/10.22067/JHS.2021.61904.0
  12. Ercisli, , & Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103(4), 1380-1384. https://doi.org/10.1016/j.foodchem.2006.10.054
  13. Esmaeeli, , Ebrahim Zadeh, A., Hasan pour, H., & Hasan pour Aghdam, M. (2019). Effect of chitosan different concentration on shelf life and quality of Cornus postharvest. Journal of Food Industry Research, 29(4), 152-139. https://doi.org/10.3390/horticulturae7120540
  14. Feliziani, , Landi, L., & Romanazzi, G. (2015). Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate Polymers, 5(132), 111-117. https://doi.org/10.1016/j.carbpol.2015.05.078
  15. Ghasi Mogadam, , Salahvarzi, Y., & Abedi, B. (2020). Increasing shelf life and quality of apple by using of Aloe vera gel and essential oil of Thyme Shiraz. Iranian Horticultural Sciences, 51(4), 911-899.
  16. Gol, N., Patel, R., Rao, P., & Ramana, T.V. (2013). Improvement of quality and shelf life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185-195. https://doi.org/10.1016/j.postharvbio.2013.06.008
  17. Guillén, , Díaz-Mula, H.M., Zapata, P.J., Valero, D., Serrano, M., Castillo, S., & MartínezRomero, D. (2013). Aloe arborescens and Aloe vera gels as coatings in delaying postharvest ripening in peach and plum fruit. Postharvest Biology and Technology, 83, 54-57. https://doi.org/10.1016/j.postharvbio.2013.03.011
  18. Han, , Zuo, J., Wang, Q., Xu, L., Zhai, B., & Wang, Z. (2014). Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage. Scientia Horticulturae, 166-178. https://doi.org/10.1016/j.scienta.2013.09.007
  19. Heidar nejad, , Ghahramani, Z., Barzegar, T., & Rabiee, V. (2020). Effect of harvest time and chitosan on quality and shef life of Physalis. Iranian Horticultural Sciences, 5(1), 186-173. https://doi.org/10.22059/ijhs.2018.250863.1389
  20. Jongsri, , Wangsomboondee, T., Rojsitthisak, P., & Seraypheap, K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. Food Science and Technology, 73, 28 -36. https://doi.org/10.1016/j.lwt.2016.05.038
  21. Karimi, , Hoseini, M., & Zahedi, M. (2018). Effect of postharvest treatment chitosan using on quality of banana. Journal of Production and Processing of Agricultural and Horticultural Products, 8(1), 14-1. https://doi.org/10.1002/fsn3.662
  22. Lustriane, , Dwivany, F., Suendo, V., & Reza, M. (2018). Effect of chitosan and chitosan-nanoparticles on postharvest quality of banana fruits. Journal of Plant Biotechnology, 45, 36-44. https://doi.org/10.5010/JPB.2018.45.1.036
  23. Marandi, (2003). Post-harvest physiology. Urmia University Press. 5:559-59. (In Persian)
  24. McHugh, H., & Senesi, E. (2000). Apple wraps: A novel method to improve the quality and extend the shelf life of fresh-cut apples. Journal of Food Science, 65(3), 480-485. https://doi.org/10.1111/j.1365-2621.2000.tb16032.x
  25. Meng, H., Qin, G.Z., & Tian, S.P. (2010). Influences of pre-harvest spraying Cryptococcus laurentii combined with postharvest chitosan coating on postharvest diseases and quality of table grapes in storage. LWT – Food Science and Technology, 43(4), 596–601. https://doi.org/10.1016/j.lwt.2009.10.007
  26. Miliauskas, P., Venskutonis, R., & Beek, T. (2004). Screening of radical scavenging activity of some medicinal and aromatic plants. Food Chemistry, 85(2), 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007
  27. Moradi Ganjeh, F., Meamar Dastjerdi, R., Heydari, M., & Movahed Nezhad, M.A. (2020). The effect of Chitosan-clay nano composite, wax coatings and olive oil on some quality properties of sweet lemon during shelf-life storage. Agricultural Engineering (Scientific Journal of Agriculture), 43(3). https://doi.org/10.22055/AGEN.2020.32308.1543
  28. Nejatian, , Mostofi, Y., Geransaie, M., & Abdousi, V. (2013). The impact of ozone on postharvest quality and storage life of Iranian grape varieties of Fakhri. Iranian Journal of Horticultural Sciences, 44(1), 1-9. (In Persian)
  29. Nguyen, , & Nguyen, H. (2020). Effect of coating chitosan and chitosan-nano on the quality, poly phenol oxidase t malondealdihyde content of the strawberry (Fragaria annanassa Duch.). Journal of Horticulture and Postharvest Reaserch, 3(1), 11-24. https://doi.org/10.22077/jhpr.2019.2698.1082
  30. Orak, H. (2007). Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Scientia Horticulturae, 111(3), 235-241. https://doi.org/10.1016/j.scienta.2006.10.019
  31. Parsa, , Smaeel Amiri, M., Hajiloo, J., Razavi, F., & Rahnemoun, H. (2019). Effect of Aloe vera gel on physiologiacal and biochemical triats of two cultivars of Apricot in storage. Journal of Food Industry Research, 30(3), 203-219.
  32. Parvizi, , Shrzad, H., Alirezalo, A., & Rahmanzadeh Eshkeh, S.H. (2020). Effect of nano chitosan and essential oil Fennel on antioxidant activity and phytochemical compounds of Blackberry. Fruit Growing Research, 5(1), 1-15.
  33. Perkins-Veazie, P., Collins, J.K., & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280-285. https://doi.org/10.1016/j.postharvbio.2007.08.002
  34. Puvvada, S., Vankayalapati, S., & Sukhavasi, S. (2012). Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry international current. Pharmaceutical Journal, 1(9), 258–263. http://www.icpjonline.com/documents/Vol1Issue9/06.pdf
  35. Razzaq, , Khan, A.S., Malik, A.U., Shahid, M., & Ullah, S. (2014). Role of putrescine in regulating fruit softening and antioxidative enzyme systems in Samar Bahisht Chaunsa” mango. Postharvest Biology and Technology, 96, 23-32. http://dx.doi.org/10.1016/j.postharvbio.2014.05.003
  36. Sardarian, , & Arian Far, A. (2018). Effect of chitosan coating and shelf life on physico-chemical and sens of grape. Journal of Innovation in Food Science and Technology, 12(3), 125-136.
  37. Sarvaiya, , & Agrawal, Y.K. (2015). Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. International Journal of Biological Macromolecules, 72, 454-465. https://doi.org/10.1016/j.ijbiomac.2014.08.052
  38. Sayyari, , Salvador, C., Daniel, V., Huertas, M.D., & María, S. (2011). Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates. Postharvest Biology and Technology, 60.2, 136-142. https://doi.org/10.1016/j.postharvbio.2010.12.012
  39. Shiri, M.A., Ghasemnezhad, M., Bakhshi, D., & Saadatian, M. (2011). Effect of ascorbic acid on phenolic compounds and antioxidant activity of packaged fresh cut table grape. Electronic Journal of Environmental, Agricultural and Food Chemistry, 10, 2506-2515.
  40. Shiri, A., Ghasemnezhad, M., Fattahi Moghaddam, J., & Ebrahimi, R. (2016). Effect of CaCl2 sprays at different fruit development stages on postharvest keeping quality of ‘Hayward’ kiwifruit. Journal of Food Processing and Preservation, 40(4), 624–635. https://doi.org/10.1111/jfpp.12642
  41. Singleton, L., Orthofer, R., & Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
  42. Sogvar, B., Koushesh Saba, M., & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114, 29–35. https://doi.org/10.1016/j.postharvbio.2015.11.019
  43. Valamoti, M., Mangafa, M., Koukouli-Chrysanthaki, C., & Malamidou, D. (2007). Grape-pressings from northern Greece: the earliest wine in the Aegean. Antiquity, 81(311), 54-61. https://doi.org/10.1017/S0003598X00094837
  44. Valero, , & Serrano, M. (2010). Postharvest biology and technology for preserving fruit quality. CRC Press 142, 55-69.
  45. Wang, , Yan, Z., Tang, W., Zhang, Q., Lu, B., Li, Q., & Zhang, G. (2021). Impact of chitosan, sucrose, glucose, and fructose on the postharvest decay, quality, enzyme activity, and defense-related gene expression of strawberries. Horticulturae, 7, 518. https://doi.org/10.3390/horticulturae7120518
  46. Xing, Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., Wang, Q., Li, W., Li, W., Shui, Y., Chen, C., & Zheng, Y. (2020). Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae, 263, 109135. https://doi.org/10.1016/j.scienta.2019.109135
  47. Xing, , Yang, S., Xu, Q., Xu, L., Zhu, D., Li, X., Shui, Y., Liu, X., & Bi, X. (2021). Effect of chitosan/nano-TiO2 composite coating on the postharvest quality of Blueberry fruit. Coatings, 11, 512.  https://doi.org/10.3390/coatings11050512
  48. Yahia, M., Contreras-Padilla, M., & Gonazalez-Aguilar, G. (2001). Ascorbic acid content in relation to ascorbic acid oxidase activityand polyamine content in tomato and bell pepper fruits during development, maturation and senescence. Lebensmittel-Wissenschaftund-Technologie, 34, 452-457. https://doi.org/10.1006/fstl.2001.0790
CAPTCHA Image