نوع مقاله : مقالات پژوهشی

نویسندگان

1 استادیار بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی جنوب کرمان، سازمان تحقیقات، آموزش و ترویج

2 استادیار پژوهشکده سبزی و صیفی، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

3 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی جنوب کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

4 مربی بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی جنوب کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

5 کارشناس بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی جنوب کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

به منظور اطلاع از میزان تنوع موجود در جمعیت فلفل (Capsicum ssp.) و توارث ویژگی­های میوه جهت بهره­برداری در برنامه‌های اصلاحی تولید بذر، نیاز به جمعیتی متنوع از نظر ویژگی­های تاثیرگذار بر عملکرد میوه است. به‌همین منظور 42 ژنوتیپ از 7 گونه مختلف فلفل از بانک ژن موسسه تحقیقات ژنتیک گیاهی و گیاهان زراعی آلمان تهیه شد. ژنوتیپ­ها در گلخانه هیدروپونیک در منطقه زرندیه استان مرکزی در قالب طرح کاملاً تصادفی با 3 تکرار در سال 1400 کشت شده و از نظر صفات وزن میوه، طول و قطر میوه، شاخص شکل میوه (طول/قطر)، ضخامت گوشت میوه، تعداد میوه در بوته/چین و عملکرد میوه در سه چین مورد ارزیابی قرار گرفتند. همچنین وراثت‌پذیری عمومی صفات بر مبنای واریانس ژنتیکی و فنوتیپی محاسبه شد. براساس نتایج حاصل تفاوت معنی‌داری بین ژنوتیپ ها ازنظر صفات مورد ارزیابی مشاهده شد. صفات از وراثت­پذیری عمومی بالایی برخوردار بودند و گزینش بر اساس این صفات می‌تواند به بهبود ویژگی‌های میوه در به­نژادی فلفل کمک کند. ژنوتیپ‌های 318 (کاپی، زرد و شیرین)، 287 (کشیده، قرمز و تند)، 348 (گرد، قرمز و شیرین)، 272 (مثلثی، قرمز و شیرین)، 309 (بلوکی، قرمز و شیرین) و 296 (کشیده، قرمز و شیرین) به دلیل داشتن عملکرد بالا، میوه‌های با سایز مناسب و بازارپسند می‌توانند پس از ارزیابی سازگاری به‌عنوان رقم معرفی شوند. علاوه بر این، با توجه به تنوع قابل‌توجه در جمعیت مورد ارزیابی، می‌توان به تولید ارقام هیبرید با ویژگی‌های متمایز در برنامه‌های اصلاحی مبادرت نمود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Evaluation of the Fruit Morphological Diversity in Some Species of Pepper (Capsicum ssp.)

نویسندگان [English]

  • Zahra Roudbari 1
  • Mohammad Reza Imani 2
  • Javad Sarhadi 3
  • Sibgol Khoshkam 4
  • Reza Yoneszadeh 5

1 Assist. Prof. of Plant Breeding, Dep. of Crop and Horticultural Science Research, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran.

2 2- Assist. Prof. of Vegetable Research Center, Horticultural Research Institute, Agricultural Research, Education and Extention Organization, Karaj, Iran

3 3- Assist. Prof. of Soil and Water Research Department, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Iran

4 4- Instructor of Crop and Horticultural Science Research Department, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Iran

5 Expert of Crop and Horticultural Science Research Department, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Iran

چکیده [English]

Introduction 
To specify the diversity of pepper plant (Capsicum ssp.) population and the inheritance of fruit characteristics for use in seed production breeding programs, there is a need for a diverse population in terms of the characteristics affecting fruit yield. By a large variety of options available for each product, there is a greater probability of selecting the best decision. A population's genetic variety may be used in several ways, including selection and hybridization. Pepper is a plant belonging to the genus Capsicum and the family Solanaceae. It is cultivated globally, particularly in tropical and subtropical regions. The genus Capsicum contains more than 30 wild and domestic species, which are classified according to flower structure, fruit, and the number of chromosomes (2n= 24, 26). 
 
Materials and Methods 
To compare different pepper species based on fruit morphology, a greenhouse experiment was conducted under hydroponic conditions in Zarandieh region, Markazi province, in a completely randomized design with three repetitions in 2021. The seeds of 42 pepper genotypes from 7 species were obtained from Gene Bank of Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). Initially, the seeds were sown in dedicated planting trays. Once the seedlings had grown six leaves, they were transplanted to the main greenhouse. Within the greenhouse, the rows of cultivation were spaced 160 cm apart, with a 25 cm gap between individual plants. Each genotype was represented by ten plants. Throughout the growing season, the plants were managed by maintaining two branches and removing any surplus ones. In this research, the following characteristics were evaluated: fruit production across three harvests, fruit weight, fruit length and diameter, fruit flesh thickness, fruit flavor (spicy or sweet), unripe fruit color, and ripe fruit color. Descriptive statistics of evaluated trait, including mean, minimum and maximum traits and the percentage of phenotypic and genotypic diversity coefficients, heritability, and the analysis of variance and comparison of means, were used to analyze the data. 
 
Results and Discussion 
A diverse collection of pepper was evaluated due to the fruit morphological traits and significant differences among different genotypes in terms of these traits. The average fruit weight of the assessed population was 26.54 g. The minimum and maximum fruit weights of 152.70 and 0.13 g were related to genotypes 409 and 276, respectively. Genotype 318, with an average weight of 144.20 g, was not significantly different from genotype 409. Both genotypes were of the species annuum, but were in two separate groups regarding fruit morphology. The heritability rate of fruit weight was 93%, which is consistent with the results of Usman et al. (2014). Length, diameter and length to diameter ratio (fruit morphology index) are the most important factors in marketing pepper fruit. The mean fruit length, diameter and morphology index were 6.35, 2.57 cm and 3.04, respectively. The highest fruit length was related to genotypes 296 and 318 at 26.33, 20.20 and 19 cm, while the lowest fruit length was 0.70, related to genotype 277. The genotypes with the highest lengths were long pepper and Kapia sweet pepper, respectively, and the genotypes with the shortest lengths tasted spicy. Genotypes 409, 200, 318, 326, 272 and 348 had the largest diameter with 6.50, 6.23, 5.80, 5.67, 5.60 and 5.30 cm, respectively. These genotypes are bell, round, Kapia, triangular, triangular, round and sweet in terms of morphology. The smallest fruit diameter belonged to genotype 293 (0.30 cm), and the nineteen genotypes with a diameter of less than 2 cm did not differ significantly from 293. Twenty genotypes with the smallest fruit diameter have a pungent flavor (Table 1). The range of the fruit morphology index was from 0.56 to 8.99. The lowest and highest values were associated with genotypes 342 and 296, respectively (Table 3). The fruit of genotype 296 was sweet, whereas the fruit of genotype 342 was spicy. The heritability of length, diameter and fruit morphology index were 0.97, 0.97 and 0.98%, respectively. The lowest and highest numbers of fruits per plant in each hand-harvest were 1 and 67 fruits, respectively, belonging to genotypes 342 and 326. However, regarding shallow length, diameter, pulp thickness and, consequently, the low weight of the fruit in genotype 342, an almost low yield of this genotype was obtained in three harvests (2742.67 kg/ha). In contrast, genotype 318, despite its small number of fruits per hand-harvest (3 fruits per hand-harvest), had the highest fruit yield of 25379.20 kg Per hectare due to having fruits with large size and pulp thickness and as a result of high fruit weight. The lowest yields related to genotypes 276 and 293 belonged to C. frutescens L., with fruit yields of 17.60 and 44.00 kg/ha in three harvests. However, there was no statistically significant difference among the performance of these genotypes and the genotypes 277, 210, 282, 358, 261, 332, 394, 304, 311, 407, 321, 215, 427, 203, 342 and 200. The percentage of phenotypic and genetic variations in fruit yield was 61, 55% and the heritability of fruit yield was 81%.
 
Conclusion
This study evaluated a diverse collection of different species of pepper with a wide range of appearance traits. However, the most desirable and marketable characteristics of the fruit were obtained from genotypes belonging to C. annuum. However, genotypes belonging to other species, which were not addressed due to the high number of fruits per plant and resistance to pests and diseases, can play a complementary role in hybrid seed production breeding programs. Based on the results, genotypes 318 (Kapia, yellow and sweet), 287 (long, red and spicy), 348 (round, red and sweet), 272 (triangular, red and sweet), 309 (black, red and sweet) and 296 (long, red and sweet) could be introduced as cultivars after evaluating their compatibility, in terms of their high yield, suitable size fruits and marketability. In addition, because to the substantial variety of the examined population, breeding efforts might develop hybrid cultivars with unique traits.
 

کلیدواژه‌ها [English]

  • Broadscence heritability
  • Fruit yield
  • Morphological diversity
  • Pepper germplasm
  1. Abrham, S. (2019). Genetic variability and heritability study of hot pepper (Capsicum annuum) genotypes in Wolaita, Southern Ethiopia. Global Journal of Science Frontier Research: Agriculture and Veterinary, 19(4), 31-36.
  2. Addissu, A.G. (2012). Heritability and genetic advance in recombinant inbred lines for drought tolerance and other related traits in sorghum (Sorghum bicolor). Continental Journal Agricultural Science, 5, 1–9. https://doi.org/5281/zenodo.839950
  3. Agaple, O.V., Stanica, F., Vinatoru, C., Barcanu, E., Tanase, B., Gherase, I., & Negosanu, G. (2020). Agro-morphological characterization of habanero peppers from the germplasm collection of vegetable research development Sation Buzau. Horticulture, 55(1), 333-338.
  4. , G.E., Bianchetti, L.D.B., & Lammers, T.G. (2005). Three new species of Capsicum (Solanaceae) and a key to the wild species from Brazil. Systematic Botany, 30(4), 863-871. https://doi.org/10.1600/036364405775097905
  5. Bharath, S.M., Cilas, C., & Umaharan, P. (2013). Fruit trait variation in a caribbean germplasm collection of aromatic hot peppers (Capsicum chinense). Hortscience, 48, 531–538. https://doi.org/10.21273/HORTSCI.48.5.531
  6. Bundela, M.K., Pant, S.C., & Hiregoudar, H. (2017). Assessment of genetic variability, heritability and genetic advance for quantitative traits in chilli (Capsicum annuum). International Quarterly Journal of Life Science, 10(2), 729-733.
  7. Christov, T.N.K., Tsonev, S., Todorova, V., & Todorovska, E.G. (2021). Genetic diversity and population structure analysis - a prerequisite for constructing a mini core collection of Balkan Capsicum annuum Biotechnology and Biotechnological Equipment, 35(1), 1010–1023. https://doi.org/10.1080/13102818.2021.1946428
  8. Chunthawodtiporn, J., Hill, T., Stoffel, K., & Van Deynze, A. (2018). Quantitative trait loci controlling fruit size and other horticultural traits in bell pepper (Capsicum annuum). Plant Genome, 11, 1–11. https://doi.org/3835/plantgenome2016.12.0125
  9. Dhaliwal, M.S., Garg, N., Jindal Vishvavidyalaya, S.K., & Cheema, D.S. (2015). Growth and yield of elite genotypes of chilli (Capsicum annuum) in diverse agroclimatic zones of Punjab. Aromatic Crops, 24(2), 83-91.
  10. Djian-Caporilano, C., Lefebvre, V., Sage-Daubeze, A.M., & Palloix, A. (2007). Capsicum. In: Singh RJ (ed) Genetic Resources, Chromosome Engineering, and Crop Improvement: Vegetable Crops, vol 3. CRC Press, Boca Raton, pp 185-243.
  11. Food and Agriculture Organization (FAO). (2021). http://faostat.fao.org.
  12. Hong, J.P., Ro, N., Lee, H.Y., Kwon, J.K., Yamamoto, E., & Kang, B.C. (2020). Genomic selection for prediction of fruit-related traits in pepper (Capsicum). Global Journal of Science Frontier Research Science Plant Breeding, 11, 1-11. https://doi.org/10.3389/fpls.2020.570871
  13. Ibiza, V.P., Blanca, J., Cafizares, J., & Nuez, F. (2011). Taxonomy and genetic diversity of domesticated Capsicum species in the Andean region. Genetic Resourcesand Crop Evolution, 59, 1-12. https://doi.org/1007/s10722-011-9744-z
  14. Ince, A., Karaca, M., & Onus, A. (2010). Genetic relationships within and between Capsicum Biochemical Genetics, 48(1), 83-95. https://doi.org/10.1007/s10528-009-9297-4
  15. Luitel, B.P., Ro, N.Y., Ko, H.C., Sung, J.S., Rhee, J.H., & Hur, O.S. (2018). Phenotypic variation in a germplasm collection of pepper (Capsicum chinense) from Korea. Journal of Crop Scienceand Biotechnology, 21(5), 499-506. https://doi.org/10.1007/s12892-018-0210-0
  16. Mcleod, M.J., Guttman, S.I., & Eshbaugh, W.H. (1982). Early evolution of chili peppers (Capsicum). EconomicBotany, 36(4): 361-368. https://doi.org/1007/BF02862689
  17. Naegele, R.P., Mitchell, J., & Hausbeck, M.K. (2016). Genetic diversity, population structure, and heritability of fruit traits in Capsicum annuum. PLoS One, 11, 1–17. https://doi.org/1371/journal.pone.0156969
  18. Paran, I., & Knaap, E. (2007). Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 58(14), 3841-3852. https://doi.org/1093/jxb/erm257
  19. Stansfield, W.D. (1991). Theory and Problems in Genetics. (3th ed.). McGraw-Hill.
  20. Usman, M., Rafii, M.Y., Ismail, M.R., Malek, M.A., & Latif, M.A. (2014). Heritability and genetic advance among chili pepper genotypes for heat tolerance and morphophysiological characteristics. Scientific World Journal, 2014, 1-15. https://doi.org/1155/2014/308042
  21. Yatung, T., Dubey, R., Singh, V., Upadhyay, G., & Pandey, A.K. (2015). Selection parameters for fruit yield and related traits in Chilli (Capsicum annuum ). Bangladesh Journal of Botany, 43(3), 283-291. https://doi.org/10.3329/bjb.v43i3.21600

 

CAPTCHA Image