ارزیابی همبستگی و تحلیل ضرایب مسیر صفات مرتبط با عملکرد میوه در توده‌های فلفل (Capsicum annum L.) ایرانی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استادیار دانشکده کشاورزی، مجتمع آموزش عالی سراوان

2 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

چکیده

با توجه به اهمیت اقتصادی عملکرد میوه و لزوم انتخاب گیاهان با بهره­وری بالا در برنامه­های به­نژادی، پژوهش حاضر به منظور تعیین ویژگی­های مورفولوژیک تأثیرگذار در عملکرد میوه و ارزیابی اثرات مستقیم و غیرمستقیم آن‌ها در 30 توده­ی فلفل ایرانی در قالب طرح کاملاً تصادفی با پنج تکرار به صورت گلدانی در محل گلخانه تحقیقاتی دانشگاه ارومیه طی سال 1396-1395 اجرا گردید. نتایج حاصل از همبستگی­های فنوتیپی نشان داد که عملکرد میوه دارای همبستگی مثبت و معنی­دار با صفات قطر میوه، دور میوه، وزن گوشت و وزن تک میوه بود، اما صفات تعداد میوه و طول میوه همبستگی فنوتیپی منفی و معنی­داری با عملکرد میوه داشتند. در بررسی همبستگی ژنتیکی، رابطه مثبت، قوی و معنی­داری بین عملکرد با وزن گوشت میوه (907/0)، دور میوه (891/0)، قطر میوه (697/0)، وزن تک میوه (646/0) و دور بوته (381/0) مشاهده گردید. بر اساس نتایج رگرسیون گام‌ به ‌گام برای عملکرد میوه هفت صفت وزن گوشت، دور بوته، قطر میوه، تعداد میوه، ارتفاع بوته، وزن کل بذر و تعداد شاخه به عنوان مؤثرترین صفات بر عملکرد میوه وارد مدل شدند که در مجموع 6/84 درصد از تغییرات کل عملکرد میوه را توجیه نمودند. بر اساس نتایج تجزیه مسیر صفات قطر میوه (709/0) و وزن گوشت (289/0) به‌ترتیب بیشترین اثر مثبت و مستقیم را بر عملکرد میوه نشان دادند. قطر میوه دارای همبستگی ژنتیکی مثبت، قوی و معنی­داری (697/0) با عملکرد میوه بود، همچنین اثر مستقیم مثبت (709/0) بر عملکرد میوه نشان داد که به طور تقریبی می­توان این دو ضریب را با هم برابر درنظر گرفت. لذا انتخاب مستقیم از طریق صفت قطر میوه می­تواند در بهبود عملکرد میوه در توده­های فلفل مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Correlation Evaluation and Path Coefficient Analysis of Traits Related to Fruit Yield in Iranian Pepper (Capsicum annum L.) Populations

نویسندگان [English]

  • M. Jabbari 1
  • R. Darvishzadeh 2
1 Assistant Professor, Faculty of Agriculture, Higher Education Complex of Saravan
2 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
چکیده [English]

Introduction
Pepper is a rich source of essential vitamins and minerals. Like tomatoes, pepper plays an important role in preventing heart diseases due to its high amount of antioxidants. Fruit yield is a complex trait that is not only controlled by several genes, but also greatly influenced by the environment. On the other hand, fruit yield is affected by a large number of other traits and their interaction. Therefore, it is very important for plant breeders to know the relationships between these traits and their interaction effects. The path coefficient analysis is a method that clarifies the relationships between traits and their direct and indirect effects on fruit yield. In this method, the correlation coefficient between two attributes is divided into components that measure direct and indirect effects. Considering the limited studies regarding the evaluation of relationships between fruit yield and other traits affecting fruit yield in pepper, this research was conducted with the aim of identifying these important relationships and evaluating their direct and indirect effects in Iranian pepper populations.
 
Materials and Methods
In order to carry out this research, the seeds of 30 Iranian pepper accessions were collected directly from the farmers. The experiment was conducted in the form of pot cultivation in the research greenhouse of the Faculty of Agriculture of Urmia University in a completely randomized design with five replications during 2015-2016. After the flowering stage, the desired traits were estimated. Variance analysis was estimated, after examining the basic hypotheses of variance analysis by SAS9.4, as well as the genotypic and phenotypic correlation between traits based on the restricted maximum likelihood (REML) procedure in the SAS9.4 software. Step-by-step regression analysis was used to determine the traits with the most variation justified the fruit yield. The Durbin-Watson test was performed to investigate the independence of experimental errors. Analysis of path coefficients was performed based on the results of stepwise regression and genotypic correlation of traits in the R V.4.0.5.
 
Results and Discussion
In order to understand the relationships between traits and use them in breeding programs, the phenotypic correlation was estimated.  In this study based on the results of phenotypic correlation, leaf width and leaf length (0.651), single fruit weight and fruit circumference (0.784), fruit circumference and fruit diameter (0.625) and pulp weight and fruit diameter (0.610), showed positive and significant correlation. The purpose of estimating genotypic correlation coefficient is to determine relationships in conditions which in environmental factors are not involved. In the investigation of genotypic correlation, a positive, strong and significant relationship between fruit yield and pulp weight (0.907), fruit circumference (0.891), fruit diameter (0.697), single fruit weight (0.646) and around the plant (0.381) were observed. Given that most of these traits are factors contributing to fruit yield, the presence of such positive and significant genotypic correlation coefficients is reasonable. It can be inferred that pepper accessions with higher fruit characteristics, encompassing factors such as plant density and branching, are likely to exhibit higher fruit yields as well. It's important to note that correlation coefficients are mathematical tools used to measure the linear relationship between two variables. Their significance lies in their mathematical interpretation, and as such, they alone do not provide sufficient proof of a cause-and-effect relationship. Utilizing the results of stepwise regression, less impactful traits or those with minimal effects were eliminated from the model. As a result, seven key traits were identified as the most influential factors affecting fruit yield: pulp weight, plant density, fruit diameter, fruit count, plant height, total seed weight, and branch count.The first characteristic was pulp weight, which was included in the model and explained 78.8% of the fruit yield changes between genotypes. The second characteristic (around the plant) along with pulp weight explained 80.9% of the fruit yield variations. Fruit diameter, together with the previous two characteristics, explained 81.5% of fruit yield variations. In total, the traits included in the model for fruit yield justified 84.6% of the total changes in fruit yield in 30 pepper accessions. In order to better understanding and more accurately interpret of the results, as well as to know the direct and indirect effects and the effect of the traits that were entered into the model through stepwise regression, the path coefficient analysis method was used in this research. Fruit diameter (0.709) and pulp weight (0.289) respectively showed the most positive and direct effect on fruit yield. Fruit pulp weight through fruit diameter had the most positive indirect effect (0.595) on fruit yield. Around the plant showed an indirect positive effect on fruit yield through pulp weight (0.157), fruit diameter (0.392) and number of branches (0.080).
 
Conclusion
In the present study, the trait of fruit diameter had a positive, strong and significant genotypic correlation (0.697) with fruit yield, and it also showed a positive direct effect (0.709) on fruit yield, these two coefficients can be considered equal, Approximately. Therefore, direct selection based on fruit diameter proves to be a valuable strategy for enhancing fruit yield. The magnitude of residual effects serves as an indicator of the model's accuracy in path analysis. When this value is substantial, it may be advisable to incorporate additional causal variables into the model. In the current study, the residual effects value (0.213) affirms the model's optimal accuracy.This research highlights the effectiveness of employing stepwise multivariate regression and path coefficient analysis to gain a deeper understanding of the fundamental relationships between traits. It underscores that relying solely on correlation relationships is insufficient for comprehensively justifying the associations between these traits.
 

کلیدواژه‌ها [English]

  • Fruit yield
  • Path coefficient analysis
  • Pepper
  • Stepwise regression
  1. Alaeddin, H., Zangi, M., & Nezamzadeh, R. (2016). Evaluation of genotypic and phenotypic correlation with yield and earliness in tetraploid species cotton. Iranian Journal of Cotton Researches, 4(1), 77-90. (In Persian with English abstract). http://doi.org/10.22092/ijcr.2017.109251
  2. Aman, J., Bantte, K., Alamerew, S., & Sbhatu, D.B. (2020). Correlation and path coefficient analysis of yield and yield components of quality protein maize (Zea mays) hybrids at Jimma, western Ethiopia. International Journal of Agronomy, 7. http://doi.org/10.1155/2020/9651537
  3. Azizi, H., Aalami, Ali., Esfahani, M., & Ebadi, AA. (2017). The study of correlation and path analysis of grain yield and its related traits in rice (Oryza sativa) varieties and lines. Journal of Crop Breeding, 9(21), 36-43. (In Persian with English abstract). http://doi.org/10.29252/jcb.9.21.36
  4. Bagheri, G., Zahedi, B., Darvishzadeh, R., & hajiali, A. (2017). Investigation on morphological and physiological variation of some sweet pepper ecotypes (Capsicum annuum). Journal of Horticultural Science, 31(1), 140-157. (In Persian with English abstract). http://doi.org/10.22067/jhorts4.v0i0.47955
  5. Daneshvar, M.H. (2009). Vegetables Growing. Shahid Chamran University Press, 462p. (In Persian)
  6. Ghazizadeh, S., Hasani, M.A., Mohammadi, A., & Bahramirad, M. (2010). Genetic variation in pepper genotypes (Capsicum) using morphological traits. Iranian Journal of Horticultural Science, 41(1), 71-82. (In Persian with English abstract)
  7. Hollandl, J.B. (2006). Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Science, 46, 642-654. http://doi.org/10.2135/cropsci2005.019
  8. IPGRI, AVRDC, & CATIE. (1995). Descriptors for Capsicum (Capsicum ). International Plant Genetic Resources Institute, Rome, Italy; the Asian Vegetable Research and Development Center, Taipei, Taiwan, and the Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica, 110p.
  9. Iqbal, S., Tak, H.I., Inam, A., Inam, A., Sahay, S., & Chalkoo, S. (2015). Comparative effect of wastewater and groundwater irrigation along with nitrogenous fertilizer on growth, photosynthesis and productivity of chilli (Capsicum annuum). Journal of Plant Nutrition, 38(7), 1006–1021. http://doi.org/10.1080/01904167.2014. 991032
  10. Jyothirmayi, T., Rao, G.N., & Rao, D.G. (2008). Physicochemical changes during processing and storage of green chili (Capsicum annuum) powders. Journal of Food Processing and Preservation, 32(5), 868–880. http://doi.org/10.1111/j.1745- 549.2008.00219.x
  11. Kadwey, S., Dadiga, A., & Prajapati, S. (2016). Genotypes performance and genetic variability studies in Hot chilli (Capsicum annum). Indian Journal of Agricultural Research, 50(1), 56-60.
  12. Kaps, M., & Lamberson, W.R. (2009). Biostatistics for Animal Science: an introductory text. (2nd Edition). Oxfordshire, UK, 504p.
  13. Keshavarz, S., Peighambari, S., Zeinali Khanghah, H., Bihamta, M., & Hassandokht, M. (2019). Morphological variation of some capsicum (Capsicum annuum) lines using multivariate statistical analysis. Iranian Journal of Horticultural Science, 50(1), 129-140. http://doi.org/10.22059/ijhs.2018.263743.1500
  14. Khomari, A., Mostafavi, K., & Mohammadi, A. (2017). Study of the relationships between yield and some important agronomic traits through path analysis and factor analysis in sunflower (Helianthus annuus) genotypes. Journal of Agronomy and Plant Breeding, 13(1), 11-20. (In Persian with English abstract)
  15. Kranthi Rekha, G. (2015). Development of hybrids and their stability in chilli (Capsicum annuum ). Ph.D. Thesis. Dr. YSR Horticultural University. Venkataramannagudem, Andhra.
  16. Lahbib, K., Bnejdi, F., & Gazzah, M. (2012). Genetic diversity evaluation of pepper (Capsicum annuum) in Tunisia based on morphologic characters. African Journal of Agricultural Research, 7(23), 3413-17. http://doi.org/10.5897/AJAR11.2171
  17. Madoşă, E., Sasu, L., Ciulca, S., Velicevici, G., Ciulca, EA., & Avadanei, C. (2010). Possibility of use of Romanian bell pepper (Capsicum annuum var grossum) local landraces in breeding process. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(2), 56-60. https://doi.org/10.15835/nbha3824743
  18. Mardanzadeh, D., Darvishzadeh, R., & Zahedi, B. (2019). Sequential path analysis based on yield and morpho-physiological characteristics in squash landraces from northwest of Iran. Journal of Plant Productions, 42(1), 115-132. (In Persian with English abstract). http://doi.org/10.22055/ppd.2019.15317.1244
  19. Mohammadi, M., Saidi, M., & Khademi, O. (2018). Evaluation of effect of gibberellins and calcium spray in different growth stages on some qualitative and quantitative traits of sweet pepper. Iranian Journal of Horticultural Science, 48(4), 823-832. (In Persian with English abstract). http://doi.org/10.22059/ijhs.2018.211788.1048
  20. Morsali Aghajari, F., Darvishzadeh, R., & Gholami, G. (2020). The effect of salt stress on morphological traits and electrophoresis pattern of proteins in recombinant inbred lines population of oilseed sunflower derived from PAC2 × RHA266 cross. Environmental Stresses in Crop Sciences, 13(2), 583-600. (In Persian with English abstract). http://doi.org/10.22077/escs.2019.2100.1517
  21. Moscone, E.A., Scaldaferro, M.A., Grabiele, M., & Cecchini, N.M. (2007). The evolution of chili peppers (Capsicum solanaceae) a cytogenetic perspective. VI International Solanaceae Conference: Genomics Meets Biodiversity. Acta Horticulturae, 745, 137-170.
  22. Munchi, A.D., Behera, T.K., & Singh, G. (2000). Correlation and path coefficient analysis in chilli. Indian Journal of Horticulture, 57(2), 157-159.
  23. Pandey, G., & Dobhal, V.K. (1993). Multivariate analysis in Chilli. Journal of Spices and Aromatic Crops, 2(1-2), 71-74.
  24. Rego, E.R. (2009). A diallel study of yield components and fruit quality in chilli pepper (Capsicum baccatum). Euphytica (Wageningen), 168, 275-287. https://doi.org/10.1007/s10681-009-9947-y
  25. Salvador, M.H. (2002). Genetic resources of chilli (Capsicum spp.) in Mexico. P.10-12. Proc. of the 16th Pepper Conf, Tampico, Tamaulipas, Mexico, November 2002.
  26. Sharma, V.K., Semwal, C.S., & Uniyal, S.P. (2010). Genetic variability and character association analysis in bell pepper (Capsicum annuum). Journal of Horticulture and Forestry, 2(3), 58–65. http://doi.org/10.5897/JHF.9000056
  27. Shumbulo, A., Nigussie, M., & Alamerew, S. (2017). Correlation and path coefficient analysis of hot pepper (Capsicum annuum) genotypes for yield and its components in Ethiopia. Advances in Crop Science and Technology, 5, 277. http://doi.org/10.4172/2329-8863.1000277
  28. Siahpoosh, M., Emam, Y., & Saeedi, A. (2003). Genotypic variation, heritability, genotypic and phenotypic correlation coefficients of grain yield, its components and some morpho- physiological characters in bread wheat (Triticum aestivum). Iranian Journal of Crop Science, 2(5). (In Persian with English abstract)
  29. Soares, R.S., Silva, H.W da., Candido, W. dos. S., & Vale, L.S.R. (2017). Correlations and path analysis for fruit yield in pepper lines (Capsicum chinense). Comunicata Scientiae, 8(2), 247-255. http://dx.doi.org/10.14295/CS.v8i2.1839.
  30. Soltani, N. (2019). Comparison the effects of calcium lactate and putrescine on post-harvest quality of Capsicum annuum. Iranian Journal of Horticultural Science, 49(4), 973-979. (In Persian with English abstract). http://doi.org/10.22059/ijhs.2017.240510.1312
  31. Srinivas, J., Reddy, K.R., Saidaiah, P., Anitha, K., Pandravada, S.R., & Balram, M. (2020). Correlation and path analysis study in chilli (Capsicum annuum) genotypes. International Research Journal of Pure and Applied Chemistry, 21(21), 1-11. http://doi.org/10.9734/irjpac/2020/v21i2130284
  32. Thakur, S., Negi, R., & Mehta, D.K. (2019). Correlation and path coefficient studies in bell pepper (Capsicum annuum var. grossum) under mid hill conditions of Solan District of Himachal Pradesh. International Journal of Current Microbiology and Applied Sciences, 8(1), 1788-1796. https://doi.org/10.20546/ijcmas.2019.801.190
  33. Tilahun, T., Bezie, Y., Petros, Y., Dessalegn, Y., & Taye, M. (2022). Correlation and path coefficient analysis of green pod yield and yield attributing traits of chili (Capsicum annuum) genotypes in Ethiopia. All Life, 15(1), 203-210. http://doi.org/10.1080/26895293.2022.2037472
  34. Valizadeh, M., & Moghadam, M. (2002). Experimental Designs in Agriculture. (Seventh edition). Pishtaz Elem Pub., Tabriz, Iran, 452 p. (In Persian)
  35. Vidya, C., Jagtap, V.S., & Santhosh, N. (2018). Correlation and path coefficient analysis for yield and yield attributing characters in chilli (Capsicum annum) genotypes. International Journal of Current Microbiology and Applied Sciences, 7(1), 3265-3268. http://doi.org/10.20546/ijcmas.2018.701.390
  36. Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557-595. http://doi.org/10.4236/am.2010.12011

 

 

CAPTCHA Image