تأثیر تنش آبی و پساب شهری بر غلظت فلزات سنگین، عملکرد و ویژگی‌های‌کیفی ریحان (Ocimum basilicum L.)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران

2 گروه باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

به­منظور ارزیابی تأثیر تنش آبی و پساب شهری بر غلظت فلزات سنگین، عملکرد و برخی ویژگی­های گیاه ریحان، آزمایشی در قالب فاکتوریل بر پایه طرح کاملاً تصادفی با تیمارهای آزمایشی شامل؛ عامل اول منبع آبیاری (I) در دو سطح )پساب و آب چاه) و عامل دوم تنش آبی (S) در شش سطح کم­ترین تنش (S1 and S2)، تنش متوسط (S3 and S4) و تنش شدید (S5 and S6) در سه تکرار در مزرعه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی ساری اجرا شد. بر پایه یافته­ها، آبیاری با پساب باعث افزایش ارتفاع گیاه، وزن تر، وزن خشک، قطر ساقه، میزان کلروفیل a، کلروفیل b، کلروفیل کل و کارتنوئید در مقایسه با آبیاری با آب چاه شد. در حالی‌که تأثیر چندانی بر میزان فلاونوئید، فنل و فعالیت آنتی­اکسیدانی نداشت. در شرایط ایجاد کم­ترین تنش بویژه سطح S1، میزان کلروفیل a، کلروفیل b، کلروفیل کل، کارتنوئید، فلاونوئید، فنل و فعالیت آنتی­اکسیدانی برگ ریحان به­ترتیب با کاهش 3/63، 8/32، 7/40، 8/45، 3/46، 5/55 و 8/9 درصدی نسبت به شرایط تنش شدید S6، روبه­رو شد. این در حالی بود که بیشترین میزان ارتفاع گیاه، وزن تر، وزن خشک و قطر ساقه در سطح کم­ترین تنش S1، به­ترتیب با 6/48 سانتی­متر، 5/11 و 51/3 گرم در تک بوته و 4/3 میلی­متر مشاهده شد. همچنین نتایج نشان داد که غلظت فلزات سرب و کادمیوم تحت تاثیر اثر متقابل منبع آبیاری و تنش آبی قرار گرفت. به‌طوری‌که بیشترین غلظت سرب و کادمیوم در تیمار آبیاری با پساب و سطوح تنش S4 و S5 به­ترتیب با 42/13، 40/13، 50/10 و 53/10 میلی­گرم بر کیلوگرم مشاهده شد. این در حالی بود که غلظت فلزات کروم و نیکل دستخوش تغییرات چندانی نشد. بر پایه یافته­ها، می­توان سطوح تنش S4 و S5 را در بهره­وری آب مناسب دانست و استفاده از پساب شهری در آبیاری گیاه ریحان را با در نظر گرفتن استانداردهای مجاز موجود، توصیه کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Water Stress and Urban Wastewater on the Heavy Metals Concentration, Yield and Quality of Basil

نویسندگان [English]

  • S. Shiukhy Soqanloo 1
  • M.A. Gholami 1
  • Y. Ghasemi 2
1 Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Mazandaran, Iran
2 Horticulture Department of Sari Agriculture Science and Natural Resources University, Sari, Iran
چکیده [English]

Introduction
Confronting the crisis of water scarcity and the looming challenge of dwindling water resources is undeniably a grave concern. Consequently, the focus of agricultural science researchers has shifted towards the utilization of wastewater. One of the notable advantages of incorporating wastewater in agriculture is the potential to curtail the expenses associated with procuring irrigation water and employing chemical fertilizers.
 
Materials and Methods
Sari has a longitude and latitude of 53°01′ E and 36°33′ N, respectively, and its weather conditions are humid according to De-marten's climate classification. Its elevation is 21 above sea level and average annual temperature and precipitation, are17.9 ºC and 650 mm, respectively). In order to evaluate the effect of water stress and urban wastewater on the concentration of heavy metals, yield and some characteristics of basil, an experiment in a factorial format based on a completely randomized design with experimental treatments including; The first factor is the source of irrigation (I): [treated wastewater (TWW) and well water (WW)], and the second factor is water stress (S): [the lowest stress (S1, S2), medium stress (S3, S4) and severe stress (S5, S6)] were performed in three replications at the research farm of Sari University of Agricultural Sciences and Natural Resources (SANRU), Iran. Finally, the obtained data were analyzed using ANOVA of SAS9.2, and the SNK post hoc test was employed to compare treatment means.
 
Results and Discussion
Based on the findings, Irrigation with wastewater increased plant height, stem diameter, fresh and dry weight compared to irrigation with well water. So that the highest plant height, stem diameter, wet and dry weight were related to irrigation with wastewater with 44.3 cm, 3.1 mm, 8.5 and 3.3 g, respectively. Also, the effect of using treated wastewater on chlorophyll a, chlorophyll b, total chlorophyll and carotenoids was significant (P ≤ 0.01). while it did not have significant effect on flavonoid, phenol and antioxidant activity. In the lowest stress, especially the S1 level, the amount of chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, flavonoid, phenol and antioxidant activity compared to the S6 level decreased by 63.3, 32.8, 40.7, 45.8, 46.3, 55.5, and 9.8%, respectively. while the highest amount of plant height, fresh weight, dry weight and stem diameter at the S1 level was observed with 48.6 cm, 11.5 g, 3.51 g and 3.4 mm, respectively. The result shown that the Pb and Cd concentration in basil under irrigation with wastewater was 3.4 and 2.5 mg.kg-1, respectively, which increased by 13 and 9% compared to well water. Water stress affected the Pb and Cd concentration, but the Cr and Ni concentration did not change significantly. The highest Pb and Cd concentration was related to high stress level S5 and medium stress level S4 and the lowest level was observed in the lowest stress levels (S1 and S2). Also, the results showed that the Pb and Cd concentration was affected by the interaction effect of irrigation source and water stress. Thus, the highest Pb concentration was observed in irrigation with wastewater and water stress levels S4 and S5 with 3.41 and 3.40 mg.kg-1, respectively, and the lowest was related to irrigation with well water and water stress level S1 with 2.2 mg.kg-1. The highest Cd concentration was related to irrigation with wastewater and stress levels S4 and S5 with 2.6 and 2.5 mg/kg, respectively, and the lowest amount were observed in well water irrigation and stress levels S1 and S2, with 1.51 and 1.50 mg.kg-1, respectively. while the Cr and Ni concentrations did not significant.
 
Conclusion
Based on the findings of this research, irrigation with treated wastewater and application of water stress had significant effect on the morphological and phytochemical characteristics of basil. while the use of treated wastewater was ineffective on the biochemical characteristics of basil and only water stress conditions affected their levels. The Pb and Cd concentration in basil increased under the influence of irrigation with wastewater and water stress levels. But this increase was lower than the standards authorized reported by the researchers and did not cause much concern. the results shown that the water stress levels S4 and S5 can be considered appropriate in water efficiency and recommend the use of treated wastewater in basil irrigation considering the authorized standards.

کلیدواژه‌ها [English]

  • Antioxidant activity
  • Cadmium
  • Plant height
  • Sever stress
  • Total Chlorophyll
  1. Ai Nio, S., Mantilen Ludong, D.P., & Wade, L.J. (2018). Comparison of leaf osmotic adjustment expression in wheat (Triticum aestivum) under water deficit between the whole plant and tissue levels. Agriculture and Natural Resources, 52(1), 33-38. https://doi.org/10.1016/j.anres.2018.03.003
  2. Alizadegan, F., Gholami Sefidkouhi, M.A., & Shiukhy, S. (2022a). Evaluation of treated wastewater irrigation effect on yield components and yield of maize (single cross 704). Iranian Journal of Irrigation & Drainage,15(6), 1328-1337. (In Persian with English abstract)
  3. Alizadegan,, Gholami Sefidkouhi, M.A., & Shiukhy, S. (2022b). Evaluation of wastewater effects on soil chemical characteristics, microelements concentrations, heavy metals accumulation and mize yield (Single Cross 704). Journal of Water and Soil36(4), 1328-1337. (In Persian with English abstract). https://doi.org/10.22067/JSW.2022.77424.1178
  4. Al-Yasi,, Attia, H., Alamer, Kh., Hassan, F., Esmat, A., Elshazly, S., Kadambot, H.M., Siddique, & Hessini, K. (2020). Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. Plant Physiology and Biochemistry, 150(1), 133-139. https://doi.org/10.1016/j.plaphy.2020.02.038
  5. Badiei,, Karandish, F., & Tabatabaei, S. (2017). The influence of irrigation with raw and treated municipal wastewater on wheat yield and microbial characteristics of soil and plant. Water and Soil Science26(4.2), 215-228. (In Persian)
  6. Bahrololomi, S., Raeini Sarjaz, M., & Pirdashti, H. (2019). The effect of drought stress on the activity of antioxidant enzymes, malondialdehyde, soluble protein and leaf total nitrogen contents of soybean (Glycine max). Environmental Stresses in Crop Sciences, 12(1), 17-28. (In Persian with English abstract). https://doi.org/10.22077/escs.2018.1316.127
  7. Baker, A.J., & Brooks, R. (1989). Terrestrial higher plants which hyper accumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 2, 81-126.
  8. Boush, M., Banejad, H., Goldani, M., & Metanat, M. (2021). Evaluation of the effect of different wastewater qualities on some biochemical and morphological traits of tomato plant under deficit irrigation. Iranian Water Researches Journal, 15(4), 59-67. (In Persian with English abstract). https://doi.org/10.22034/iwrj.2021.11172
  9. Chaganti, N.V., Ganjegunte, G., Niu, G., Ulery, A., Flynn, R., Enciso, M.J., Meki, N.M., & Kiniry, R.J. (2020). Effects of treated urban wastewater irrigation on bioenergy sorghum and soil quality. Agricultural Water Management, 228, 78-91. https://doi.org/10.1016/j.agwat.2019.105894
  10. Chaney, R.L. (1989). Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. Inorganic Contaminants in the Vadose Zone, 4, 140-158. https://doi.org/10.1007/978-3-642-74451-8_10
  11. De Masi, , Siviero, P., Esposito, C., Castaldo, D., Siano, F., & Laratta, B. (2006). Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.). European Food Research and Technology, 223, 273-281. https://doi.org/10.1007/s00217-005-0201-0
  12. Du, Y., Zhao, Q., Chen, L., Yao, X., & Xie, F. (2020). Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy, 10, 1-21. https://org/10.3390/agronomy10020302
  13. Ebrahimzadeh, M.A., Pourmorad, F., & Bekhradnia, A.R. (2008). Iron chelating activity screening, phenol and flavonoid content of some medicinal plants from Iran. Journal of Biotechnology, 32, 43-49.
  14. Efeoglu, B., Ekmekçi, Y., & Çiçek, N. (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75, 34-42. https://org/10.1016/j.sajb.2008.06.005
  15. Elmer, P. (1982). Analytical methods for atomic absorption spectrophotometry.
  16. Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy Metal Stress and Some Mechanisms of Plant Defense Response. The Scientific World Journal, 1-18. https://doi.org/10.1155/2015/756120
  17. Faraji, S., Hadadinejad, M., Abdoosi, V., Basaki, T., & Karami, S. (2020). Effects of drought stress on the phenol, flavonoid and cyanidin 3-glocoside content of juice and fruit yield in native pomegranate genotypes (Punica granatum). Iranian Journal of Medicinal and Aromatic Plants Research, 35(6), 889-901. (In Persian with English abstract). https://doi.org/10.22092/ijmapr.2019.123934.2426
  18. Farooqi, Z.U.R. (2021). Phytoremediation of inorganic pollutants: An eco-friendly approach, its types and mechanisms. Plant Environment, 1(20), 110-129.
  19. Fattahi, K., Babazadeh, H., & Shirshahi, F. (2016). Yield Barley and its Components Irrigated with Brackish and Grey Water. Water Resources Engineering8(27), 23-30. (In Persian with English abstract). https://doi.org/20.1001.1.20086377.1394.8.27.3.5
  20. Francia, E., Tondelli, A., Rizza, F., Badeck, F.W., Thomas, W.T.B., van Eeuwijk Romagosa, I., Stanca, A.M., & Pecchioni, N. (2013). Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy, 8(1), 1-8. https://doi.org/10.4081/ija.2013.e1
  21. Gatta, G., Libutti, A., Gagliardi, A., Beneduce, L., Brusetti, L., Borruso, L., Disciglio, G., & Tatantino, E. (2015). Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agricultural Water Management, 149, 33-43. https://doi.org/10.1016/j.agwat.2014.10.016
  22. Ghasemi, K., Ghasemi, Y., & Ebrahimzadeh, M.A. (2009). Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pakistan Journal of Pharmaceutical Sciences, 22(3), 277-281.
  23. Ghazavi, R., & Orest, M. (2016). Investigation the effect of irrigation with municipal wastewater on accumulation of some pollutants and chemicals elements in plant and its effect on their ecological characteristics (A case study: Eucalyptus Globulus). Journal of Plant Ecosystem Conservation, 4(8), 13-29. (In Persian with English abstract)
  24. Ghorbanli, M., Bakhshi Khaniki, G., & Zakeri, A. (2012). Investigation on the effects of water stress on antioxidant compounds of Linum usitatissimumIranian Journal of Medicinal and Aromatic Plants Research, 27(4), 647-658. (In Persian with English abstract). https://doi.org/10.22092/ijmapr.2012.4514
  25. Hajihashemi, S., Mbarki, S., Skalicky, M., Noedoost, F., Raeisi, M., & Brestic, M. (2020). Effect of wastewater irrigation on photosynthesis, growth, and anatomical features of two wheat cultivars (Triticum aestivum). Water, 12, 1-12. https://doi.org/10.3390/w12020607
  26. Halim, G., Emam, Y., & Shakeri, E. (2018). Evaluation of yield, yield components and stress tolerance indices in bread wheat cultivars at post-anthesis irrigation cut-off. Journal of Crop Production and Processing, 7(4), 121-134. (In Persian with English abstract). https://doi.org/10.29252/jcpp.7.4.121
  27. Jubany-Marí, T., Munné-Bosch, S., & Alegre, L. (2010). Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiology and Biochemistry, 48(5), 351-358.
  28. Kamali, M., Goldani, M. & Farzaneh, A. (2012). The effect of different irrigation regimes and hydrogen peroxide on growth and photosynthetic parameters on ornamental amaranth (Amaranthus tricolor). Journal of Water and Soil, 26(2), 309-318. (In Persian with English abstract). https://doi.org/10.22067/JSW.V0I0.14154
  29. Karimi, S., Zahedi, B., & Mumivand, H. (2020). Investigating the effect of drought stress on growth, essential oil content and some physiological traits of four basil cultivars (Ocimum basilicum). Journal of Plant Production, 27(2), 201-2013.
  30. Khawla, K., Besma, K., Enrique, M., & Mohamed, H. (2019). Accumulation of trace elements by corn (Zea mays) under irrigation with treated wastewater using different irrigation methods. Ecotoxicology and Environmental Safety, 170, 530-537. https://doi.org/10.1016/J.ECOENV.2018.12.025
  31. Koc, E., İslek, C., & Üstun, A.S. (2010). Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum) varieties. Gazi University Journal of Science, 23, 1-6.
  32. Lindsay, W.L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428.
  33. Mahfooz, Y., Yasar, A., Guijan, L., Islam, Q.U., Tabinda Akhtar, A.B., Rasheed, R., Irshad, S., & Naeem, U. (2020). Critical risk analysis of metals toxicity in wastewater irrigated soil and crops: a study of a semi-arid developing region. Scientific Reports, 10, 12845. https://doi.org/10.1038/s41598-020-69815-0
  34. Maleki, A., Naderi, A., Siyadat, A., Tahmasebi, A., & Fazel, Sh. (2012). The effect of drought stress in different phenological stages on soybean yield and yield components. Journal of Research in Agricultural Sciences, 4(15), 71-82. (In Persian)
  35. Marschner, P. (2012). Marschner’s Mineral Nutrition of Higher Plant. 3rd Academic, London.
  36. Mehraban, A., Tobe, A., Gholipour, A., Amiri, E., Ghafari, A., & Rostaii, M. (2019). The effects of drought stress on yield, yield components, and yield stability at different growth stages in bread wheat cultivar (Triticum aestivum). Polish Journal Environmental Studies, 28(2), 739-746. https://doi.org/10.15244/pjoes/85350
  37. Moghadam, M., Alirezaei Noghondar, M., Selahvarzi, Y., & Goldani, M. (2015). The effect of drought stress on some morphological and physicochemical characteristics of three cultivars of basil (Ocimum basilicum). Iranian Journal of Horticultural Science, 46(3), 507-521. (In Persian with English abstract). https://doi.org/10.22059/ijhs.2015.55870
  38. Mousavi, S.R., & Shahsavari, M. (2014). Effects of treated municipal wastewater on growth and yield of maize (Zea mays). Biological Forum, 6(2), 228-233.
  39. Nabavi, S.M., Ebrahimzadeh, M.A., Nabavi, S.F., Hamidinia, A., & Bekhradnia, A.R. (2008). Determination of antioxidant activity, phenol and flavonoids content of Parrotia persica Pharmacologyonline, 2, 560-567.
  40. Nazario, A.A., Zution, I., Augusto Agnellos Barbosa, E., Nazario Silva dos Santos, L., Rodrigues Cavalcante Feitosa, D., & Matsura E.E. (2019). Impact of the application of domestic wastewater by subsurface drip irrigation on the soil solution in sugarcane cultivation. Applied and Environmental Soil Science, 4, 2-11. https://doi.org/10.1155/2019/8764162
  41. Panoras, A., Evgenidis, G., Bladenopoulous, S., Melidis, V., Doitsinis, A., Samaras, I., Zdragkas, A., & Matsi, Th. (2003). Corn irrigation with reclaimed municipal wastewater. GlobalNEST International Journal, 5(1), 39-45.
  42. Raeini-Sarjaz, M., & Shiukhy Soqanloo, S. (2014). Evaluation of the effect of geographical aspects and fruit location within orange tree canopy on Sangin orange fruit quality. Journal of Agricultural Meteorology, 2(1), 57-66. (In Persian with English abstract). https://doi.org/10.22125/AGMJ.2020.223313.1094
  43. Ray, R. R., Fares, A. & Risch, E. (2018). Effects of drought on crop production and cropping areas in Texas. Agricultural & Environmental Letters, 14, 1-5.
  44. Raychaudri, S., Raychaudri, M., Rautaray, S.K., & Kumar, A. (2014). Impact of urban wastewater on soil and crop. Edition: DWM Bulletin No. 64. Publisher: Directorate of Water Management, Bhubaneswar, Orissa. 32pp.
  45. Razmi, N., Iran nejad, J., Khanzadeh, H. & Soheili Mogaddam, B. (2013). The effects of different irrigation regimes on the morphological and physiological characteristics of three soybean cultivars (Glycine max). Journal of Crop Ecophysiology, 7(1), 57-70. (In Persian with English abstract)
  46. Sadeghi, M., Noroozi, M., Kargar, F., & Mehrbakhsh, Z. (2020). Heavy Metal Concentration of Wheat Cultured in Golestan Province, Iran and Its Health Risk Assessment. Journal of Environmental Health and Sustainable Development, 5(2), 993-1000. https://doi.org/‎18502/jehsd.v5i2.3386
  47. Sarker, U., & Oba, Sh. (2018). Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biology, 18(258), 1-15. https://doi.org/10.1186/s12870-018-1484-1
  48. Sayadi, A., Ahmadi, J., Asghari, B., & Hoseini, S.M. (2015). Evaluation of drought and salinity stress effects on phenolic compounds of the medicinal plant (Thymus vulgaris). Eco-phytochemical Journal of Medicinal Plants2(4), 50-61. (In Persian). https://doi.org/10.1016/j.indcrop.2019.04.055
  49. Shiukhy-Soqanloo, S., Mousavi-Baygi, M., Torabi, B., & Raeini-Sarjaz, M. (2021a). Evaluation of climate change effects on irrigated wheat CV. Mehregan yield under drought stress condition (Case study: Varamin). Journal of Agricultural Meteorology, 9(2), 15-28. (In Persian with English abstract). https://doi.org/10.22125/agmj.2021.297373.1121
  50. Shiukhy-Soqanloo, S., Mousavi-Baygi, M., Torabi, B., & Raeini-Sarjaz, M. (2021b). The climate change effect on crop development, growth and yield under drought stress by using SSM model. Ph.D. Agricultural Faculty, Ferdowsi University of Mashhad.
  51. Singh, A., & Agrawal, M. (2012). Effects of waste water irrigation on physical and biochemical characteristics of soil and metal partitioning in Beta vulgaris Agriculture Researches, 4, 379–391. https://doi.org/10.1007/s40003-012-0044-4
  52. Singh, D.V., Upadhyay, A.K., Singh, R., & Singh, D.P. (2021). Implication of municipal wastewater on growth kinetics, biochemical profile, and defense system of Chlorella vulgaris and Scenedesmus vacuolatus. Environmental Technology & Innovation, 26, 1-13. https://doi.org/10.1016/j.eti.2022.102334
  53. Slama, I., M’Rabet, R., Ksouri, R., Talbi, O., Debez, A., & Abdelly, C. (2017). Effects of salt treatment on growth, lipid membrane peroxidation, polyphenol content, and antioxidant activities in leaves of Sesuvium portulacastrum Arid Land Research and Management, 31(4), 404-417. https://doi.org/10.1080/15324982.2017.1329759
  54. Swain, A., Singh, S. K., Mohapatra, K.K., & Patra, A. (2020). Effect of sewage sludge application on yield, nutrients uptake and nutrient use efficiency of spinach (Spinacia oleracea). Annals of Plant and Soil Research, 22(3), 305-309.
  55. Tripathi, V., Rajput, T.B.S., & Patel, N. (2016). Biometric properties and selected chemical concentration of cauliflower influenced by wastewater applied through surface and subsurface drip irrigation system. Journal of Cleaner Production, 139, 142-153. https://doi.org/10.1016/j.jclepro.2016.08.054
  56. Vahdi,, & Gholinezhad, E. (2015). Evaluation of drought tolerance of some soybean cultivars. Journal of Water Research in Agriculture, 29(1), 1-9. (In Persian with English abstract). https://doi.org/10.22092/jwra.2015.101321
  57. Yang, J., Cao, J., Xing, G., & Yuan, H. (2015). Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima Bioresource Technology, 175, 537-544. https://doi.org/10.1016/j.biortech.2014.10.124
  58. Yazdani, A., Saffari, M., & Ranjbar, Gh. (2017). Effect of treatment with treated municipal wastewater on grain yield and accumulation of heavy metals in grain of barley genotypes (Hordeum vulgare). Iranian Journal of Crop Sciences, 4, 284-296. (In Persian with English abstract)

 

CAPTCHA Image