بررسی خصوصیات ادافیکی، مورفولوژیکی و فیتوشیمیایی جمعیت‌های وحشی گیاه گلدر (Otostegia persica B.) در رویشگاه‌های بلوچستان، ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه باغبانی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 دانشگاه ولایت ایرانشهر

3 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل،ایران

چکیده

عوامل محیطی از مهمترین فاکتورهای مؤثر بر صفات کمی و کیفی گیاهان دارویی است. این پژوهش در سال 1397 با هدف بررسی برخی ویژگی‌های ادافیکی، مورفولوژیکی و فیتوشیمیایی گیاه گلدر در رویشگاه­های طبیعی بلوچستان در قالب طرح آشیانه­ای به صورت کاملاً تصادفی با سه تکرار به اجرا در آمد. صفاتی نظیر اجزاء اسانس برگ و گل جمعیت کوه بیرک مهرستان نیز مورد ارزیابی قرار گرفت. مناطق مورد بررسی عبارت بودند از، 1- سراوان (روستاهای کوه سونط و ناهوک)، 2- خاش (روستاهای کوه پنج انگشت و پشت کوه)، 3- سرباز (روستاهای پادیک و مرکز سرباز کلات) و 4- مهرستان (روستاهای زرد و کوه بیرک) بودند. نتایج نشان داد که کمترین (80/7) و بیشترین (50/8) سطح pH به ترتیب در زرد و کوه­بیرک از شهرستان مهرستان، حداقل (29/1) و حداکثر (38/4) میزان EC به ترتیب در پنج انگشت و ناهوک، کمترین (53/43 دسی­زیمنس بر متر) و بیشترین (73/50 دسی­زیمنس بر متر) سطح Na به ترتیب در کوه بیرک و ناهوک، بیشترین میزان N  و P در پشت­کوه خاش، بیشترین مقدار K کل، K قابل جذب و بیشترین درصد سیلت در منطقه کوه سونط سراوان اندازه­گیری شد. حداکثر فاصله میانگره، طول دمبرگ، طول و عرض برگ و تعداد شاخه­های اصلی و شاخه­های فرعی در منطقه کوه­بیرک شهرستان مهرستان و بیشترین ارتفاع گیاه در منطقه ناهوک سراوان وجود داشت. حداکثر میزان فلاونوئیدهای برگ و فلاونوئید ریشه (به ترتیب 83/1 و 11/0 میلی‌گرم کوئرستین بر گرم وزن نمونه) و فنل ساقه (86/1 میلی­گرم گالیک اسید بر گرم وزن نمونه) در منطقه پنج انگشت شهرستان خاش، بیشترین میزان فلاونوئید ساقه و ریشه (به ترتیب 45/0 و 11/0 کوئرستین بر گرم وزن نمونه) در منطقه زرد شهرستان مهرستان، بیشترین فنل برگ (38/2 میلی­گرم گالیک اسید بر گرم وزن نمونه) و کربوهیدرات ریشه (73/1 میلی­گرم بر گرم) در منطقه پشت کوه خاش و حداکثر میزان کربوهیدرات برگ (99/1 میلی‌گرم بر گرم) در منطقه کوه­سونط سراوان بدست آمد. آنالیز ترکیبات شیمیایی اسانس تعداد 12 ترکیب در برگ و ۳۱ ترکیب در گل را نشان داد. بیشترین اجزاء اسانس در برگ و گل به ترتیب Thymol با سهم 12 درصدی و Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- (CAS)) با سهم 13 درصدی بودند. به طور کلی نتایج حاصل از این پژوهش نشان داد در بین جمعیت­های مورد مطالعه از نظر تمام ویژگی­های مورد بررسی تنوع قابل ملاحظه­ای وجود داشت که نشان می­دهد عوامل محیطی همانند عوامل ژنتیکی در ایجاد تنوع در خصوصیات مورفولوژیکی و فیتوشیمیایی این گیاه موثر هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Edaphic, Morphological and Phytochemical Components of Wild Population of Otostegia persica B. in Habitats of Baluchistan, Iran

نویسندگان [English]

  • M. Nematinejad 1
  • A.Sh. Raissi 2
  • M.R. Asgharipour 3
  • F. Nosrati 1
1 Faculty of agriculture, Zabol university, Zabol, Iran
2 Department of Horticulture, Faculty of Agriculture, Velayat University, Iranshahr, Iran
3 Faculty of agriculture, university of Zabol, Zabol, Iran
چکیده [English]

Introduction
 One of the most important factors affecting the quantitative and qualitative characteristics of plants are genetic and environmental factors and their interactions. Golder (Otostegia persica Boiss.) is one of the endemic species of Iran and is in the list of top 10 medicinal plants used in Baluchistan, Iran. Therefore, in this study, some morphological and phytochemical characteristics of this plant were investigated in the natural habitats of Baluhistan. Essential oil components of leaves and flowers of Kooh birk-Mehrestan population also measured. Also, with the aim of investigating the soil properties on the establishment and growth characteristics of Golder, the soil edaphic characteristics of plant communities were evaluated.
Materials and Methods
 This study was conducted in 2017 in some natural habitats of Baluchistan, Iran. Research was performed in the form of a nested plan as completely random design with three replications in the cities of 1- Saravan (Villages of Kooh Sont and Nahuk), 2- Khash (Villages of Panj Angisht and Posht Kuh), 3- Sarbaz (Padik village and Kalat Sarbaz) and 4-Mehrestan (Villages of Zard and Birk kooh) using field survey. Edaphic traits such as soil texture and chemistry were measured. Morphological traits including plant height, internode distance, leaf length and width were measured using instruments such as graduated rulers and calipers. Phytochemical traits including Phenol, Flavonoids and Carbohydrates in different parts of the plant and also the components of essential oils in leaves and flowers were studied. Soluble carbohydrate by Coles and Ansel method, photosynthetic pigments by Arnon method, total phenols with fullene-cicalto reagent by McDonald method, Flavonoids by aluminum chloride colorimetric method and adsorption of any reaction compound at 415 nm wavelength by spectrophotometer were measured. Data analysis was performed by SAS software (version 9.2) and the means were compared by Duncan's multiple range test at 5% level.
Results
 The lowest (7.80) and highest (8.50) pH levels were measured in Zard and Kooh Birk respectively. Lowest (1.29) and highest (4.38) EC levels in Panj angosht and Nahuk respectively, the lowest (43.53(dS m-1)) and highest (50.73(dS m-1)) Na levels in Kooh Birk and Nahuk respectively, the highest N (11.10%) and P (0.32 (ppm)) in the Posht kooh of Khash, the highest amount of total K (62.20 (ppm)), absorbable K (72.17(ppm)) and the highest percentage of silt (38.30) were obtained in the Kooh sont area of Saravan. In evaluating the growth characteristics of plant in different regions, the maximum internode distance, highest number of lateral branches, petiole length, leaf length and width and number of main branches in Kooh Birk region of Mehrestan city and highest plant height in Nahuk region of Saravan city were measured. Comparing the amount of phytochemical compounds in different organs of this plant, it was observed that the highest amount of flavonoids is present in the leaves and the highest amount of phenols and carbohydrates are present in the stem. The lowest amount of all three compounds was measured at the root. Maximum amount of leaf Flavonoids (1.83 mgQE/g), stem Phenol (mg GAE/g 1.86) and root Flavonoid (0.11 mgQE/g) in Panj angosht area of ​​Khash city, stem and root Flavonoids (0.45mgQE/g and 0.11mgQE/g) and stem Carbohydrate (1.99 mg/g) in Zard area of ​​Mehrestan city, leaf Phenol (mgGAE/g 2.38) and root carbohydrate (1.73 mg/g) in Posht kooh region of Khash, and maximum amount of leaf carbohydrates (1.99 mg/g) in Kooh sont area of Saravan were obtained. Analysis of the chemical composition of the essential oil using a gas chromatograph-mass spectrometer (GC-MS) showed 12 compounds per leaf and 31 compounds per flower. The highest and lowest essential oil components were Thymol (12.0%) and Decane (2.1%), respectively. Also, the highest and lowest components of essential oils in flowers were Benzene, 1- (1,5-dimethyl-4-hexenyl) -4-methyl- (CAS)) (13.0%) and (0.4%), respectively. Therefore, the lowest essential ingredient was Decane, both in leaves and flowers. In general, the results of this study showed that there is a considerable diversity among the studied populations in terms of all the studied characteristics. This indicates that environmental factors similar to genetic factors are effective in creating diversity in morphological and phytochemical characteristics of this plant.
Conclusion
 In general, the results of this experiment showed that the habitats of Khash are better in terms of soil chemistry and major phytochemical traits. Kooh birk region is the best area for harvesting the aerial parts of this plant.
 

کلیدواژه‌ها [English]

  • Elements
  • Essence components
  • Flavonoid
  • Morphology
  1. Adam S., Al-Yahya M., and Al-Farhan A. 2001. Response of najdi sheep to oral administration of citrullus colocynthis fruits, nerium oleander leaves or their mixture. Small Ruminant Research 40(3): 239-244. https://doi.org/10.1016/S0921-4488(01)00184-5.
  2. Adnani M., Pourmeidani A., and Farahpour M. 2009. Adaptation and establishment studies of some grass species in sub-steppic ranges of kahak in ghom province. Iranian Journal of Range and Desert Research 16(1): 11-21. Record Number : 20093291015.
  3. Ahmadi S. 2022. Antibacterial and antifungal activities of medicinal plant species and endophytes. Cellular, Molecular and Biomedical Reports 2(2): 109-115. https://doi.org/10.55705/cmbr.2022.340532.1042.
  4. Arnon A. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23(1): 112-121.
  5. Arsenijević J., Drobac M., Šoštarić I., Jevđović R., Živković J., Ražić S., Moravčević Đ., and Maksimović Z. 2019. Comparison of essential oils and hydromethanol extracts of cultivated and wild growing thymus pannonicus all. Industrial Crops and Products 130: 162-169. https://doi.org/10.1016/j.indcrop.2018.12.055.
  6. Azizi A., Hadian J., Gholami M., Friedt W., and Honermeier B. 2012. Correlations between genetic, morphological, and chemical diversities in a germplasm collection of the medicinal plant Origanum vulgare L. Chemistry & Biodiversity 9(12): 2784-2801. https://doi.org/10.1002/cbdv.201200125.
  7. Besalatpour A., Khoshgoftarmanesh A., Hajabbasi M., and Afyuni M. 2008. Germination and growth of selected plants in a petroleum contaminated calcareous soil. Soil & Sediment Contamination 17(6): 665-676. https://doi.org/10.1080/15320380802425113.
  8. Bezenjani S.N., Pouraboli I., Afshar R.M., and Mohammadi G. 2012. Hepatoprotective effect of otostegia persica boiss. Shoot extract on carbon tetrachloride-induced acute liver damage in rats. Iranian Journal of Pharmaceutical Research: IJPR 11(4): 1235. PMCID: PMC3813173; PMID: 24250558.
  9. Ebrahimpour M., Pourkhabbaz A., Baramaki R., Babaei H., and Rezaei M. 2011. Bioaccumulation of heavy metals in freshwater fish species, anzali, iran. Bulletin of Environmental Contamination and Toxicology 87(4): 386-392. https://doi.org/10.1007/s00128-011-0376-y.
  10. Esmaeili H., Karami A., Hadian J., Ebrahimi S.N., and Otto L.-G. 2020. Genetic structure and variation in iranian licorice (Glycyrrhiza glabra L.) populations based on morphological, phytochemical and simple sequence repeats markers. Industrial Crops and Products 145: 112140. https://doi.org/10.1016/j.indcrop.2020.112140.
  11. Farahani R.Z., and Hekmatfar M. 2009. Facility location: Concepts, models, algorithms and case studies. Springer Science & Business Media.
  12. Farhang A., Kheiri A., and Soleimani A., 2013. The effect of height on the morphological and physiological achillea aucheri boiss. In: The first National Congress on Medicinal Plants and Sustainable Agriculture.
  13. Fazeli-Nasab B., Rahnama M., and Shahriari S. 2019. The antimicrobial properties of hydro-alcoholic extracts of 29 medicinal plants on E. coli and Staphylococcus aureus microbes. NFVM 1(2): 1-15. https://doi.org/10.35066/j040.2018.407.
  14. Fazeli-Nasab B., Sirousmehr A., Mirzaei N., and Solimani M. 2017. Evaluation of total phenolic, flavenoeid content and antioxidant activity of leaf and fruit in 14 different genotypes of Ziziphus mauritiana L. In south of Iran. Eco-Phytochemical Journal of Medicinal Plants 4(4): 1-14.
  15. Gairola S., Shariff N.M., Bhatt A., and Kala C.P. 2010. Influence of climate change on production of secondary chemicals in high altitude medicinal plants: Issues needs immediate attention. Journal of Medicinal Plants Research 4(18): 1825-1829. https://doi.org/10.1007s10531-011-0082-4.
  16. Gilliam F.S., and Dick D.A. 2010. Spatial heterogeneity of soil nutrients and plant species in herb-dominated communities of contrasting land use. Plant Ecology 209(1): 83-94. https://doi.org/10.1007/s11258-010-9725-x.
  17. Jamzad Z. 2012. Flora of iran: Lamiaceae. Tehran: Research Institute of Forests and Rangelands: 213-219.
  18. Keles Y., and Öncel I. 2004. Growth and solute composition in two wheat species experiencing combined influence of stress conditions1. Russian Journal of Plant Physiology 51(2): 203-209. https://doi.org/10.1023/B:RUPP.0000019215.20500.6e.
  19. Klute A., and Dirksen C. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: Methods of soil analysis: Part 1 physical and mineralogical methods. pp: 687-734. https://doi.org/10.2136/sssabookser5.1.2ed.c28.
  20. McDonald S., Prenzler P.D., Antolovich M., and Robards K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chemistry 73(1): 73-84. https://doi.org/10.1016/S0308-8146(00)00288-0.
  21. Meamari S., Yavari A., and Bikdeloo M. 2020. Investigation of chemical diversity of essential oil of natural populations of Zataria multiflora boiss. In hormozgan province. Iranian Journal of Horticultural Science 51(3): 669-677. https://dx.doi.org/10.22059/ijhs.2020.306929.1826.
  22. Mežaka I., Kronberga A., Nakurte I., Taškova I., Jakovels D., and Primavera A. 2020. Genetic, chemical and morphological variability of chamomile (Chamomilla recutita L.) populations of latvia. Industrial Crops and Products 154: 112614. https://doi.org/10.1016/j.indcrop.2020.112614.
  23. Mir A., and Mirshekari M. 2013. The study of sistan and baluchestan province. Tehran: Publishing company'stextbooks.
  24. Morshedloo M., Ebadi A., Fatahi Moghaddam M., and Yazdani D. 2012. Evaluation of essential oil composition in three species of hypericum from Iran. Journal of Medicinal Plants 11(42): 23-31.http://dorl.net/dor/20.1001.1.2717204.2012.11.42.21.9.
  25. Nasrollahzadeh M., Sajadi S.M., and Mirzaei Y. 2016. An efficient one-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles at room temperature by green synthesized cu nps using otostegia persica leaf extract. Journal of Colloid and Interface Science 468: 156-162. https://doi.org/10.1016/j.jcis.2016.01.050.
  26. Noroozi V., Yousefzadeh S., Asilan K.l., and Mansourifar S. 2017. Investigating the variation of essential oil content, chlorophyll, carotenoid, anthocyanin and flavonoid of (Mentha longifolia (L.) hods. Subsp. Longifolia) in several habitats of marand. Eco-phytochemical Journal of Medicinal Plants 5(1): 52-66.
  27. Nosrati F., Fakheri B., Solouki M., Mahdi Nezhad N., and Valizadeh M. 2019. Analysis of some phytochemical characteristics of Astragalus fasciculifolius boiss. In natural habitats of south sistan and baluchistan province, iran. Iranian Journal of Medicinal and Aromatic Plants Research 35(1): 68-79. https://dx.doi.org/10.22092/ijmapr.2019.121991.2327.
  28. Olsen S.R., Sommers L.E., and Page A.L. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties of phosphorus. ASA Monograph, 9: 403-430.
  29. Parvin A., Yaghmaei P., Noureddini M., Haeri Roohani S.A., and Aminzadeh S. 2019. Comparative effects of quercetin and hydroalcoholic extract of Otostegia persica boiss with atorvastatin on atherosclerosis complication in male wistar rats. Food Science & Nutrition 7(9): 2875-2887. https://doi.org/10.1002/fsn3.1136.
  30. Rahdari F.G., Shahanipour K., Monajemi R., and Adibnejad M. 2022. Comparison of the antisclerotic effect of hydroalcoholic extracts of Ocimum basilicum and Otostegia persica with quinacrine by inhibition of phospholipase a2 in male wistar rats. Avicenna Journal of Phytomedicine 12(2): 175. https://doi.org/10.22038%2FAJP.2021.19075.
  31. Rakhshani A., Alizadeh E., Ahmadifar E., and Shahriari Moghadam M. 2021. Effect of dietary golder powder (Otostegia persica) on blood parameters, antioxidant defense and immune of common carp (Cyprinus carpio). Aquatics Physiology and Biotechnology 9(1): 39-56. https://doi.org/10.22124/japb.2021.15640.1368.
  32. Rezaei-Nasab M., Komeili G., and Fazeli-Nasab B. 2017. Gastroprotective effects of aqueous and hydroalcholic extract of Scrophularia striata on ethanol-induced gastric ulcers in rats. Der Pharmacia Lettre 9(5): 84-93.
  33. Rhoades J. 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of soil analysis: Part 3 chemical methods. pp: 417-435. https://doi.org/10.2136/sssabookser5.3.c14.
  34. Saeidi K., Sefidkon F., and Babaei A. 2014. Study of some phytochemical and morphological characteristics of dog rose fruit in north of Iran. Journal of Crops Improvement 16(3): 545-554. https://dx.doi.org/10.22059/jci.2014.53257.
  35. Salehi-Sardoei A., and Khalili H. 2022. Nitric oxide signaling pathway in medicinal plants. Cell Mol Biomed Rep 2(1): 1-9. https://doi.org/10.55705/cmbr.2022.330292.1019.
  36. Sepahi Sarjo Y., Mousavu Nik S.M., Galavi M., Ghanbari A., Raissi A.S., and Nosrati F. 2020. Investigation of morphological, physiological and phytochemical characteristics of Euphorbia tirucalli L. In some natural habitats of baluchistan. Iranian Journal of Medicinal and Aromatic Plants Research 36(2): 259-273. https://doi.org/10.22092/ijmapr.2020.125727.2530.
  37. Shahriari Z., Heidari B., and Dadkhodaie A. 2018. Dissection of genotype× environment interactions for mucilage and seed yield in plantago species: Application of ammi and gge biplot analyses. PloS One 13(5): e0196095. https://doi.org/10.1371/journal.pone.0196095.
  38. Sharifi-Rad M., Pohl P., and Epifano F. 2021. Phytofabrication of silver nanoparticles (agnps) with pharmaceutical capabilities using Otostegia persica (burm.) boiss. Leaf extract. Nanomaterials 11(4): 1045. https://doi.org/10.3390/nano11041045.
  39. Sharififar F., Moshafi M., Mansouri S., Khodashenas M., and Khoshnoodi M. 2007. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora boiss. Food Control 18(7): 800-805. https://doi.org/10.1016/j.foodcont.2006.04.002.
  40. Sharma R., Samant S., Sharma P., and Devi S. 2012. Evaluation of antioxidant activities of Withania somnifera leaves growing in natural habitats of north-west Himalaya, india. Journal of Medicinal Plants Research 6(5): 657-661. https://doi.org/10.5897/JMPR11.257
  41. Tofighi Z., Alipour F., Hadavinia H., Abdollahi M., Hadjiakhoondi A., and Yassa N. 2014. Effective antidiabetic and antioxidant fractions of Otostegia persica extract and their constituents. Pharmaceutical Biology 52(8): 961-966. https://doi.org/10.3109/13880209.2013.874463.
  42. Zadali R., Baghery M., Abbasi M., Yavari N., Miran M., and Ebrahimi S.N. 2022. Anticonvulsant activity of Iranian medicinal plants and molecular docking studies of isolated phytochemicals. South African Journal of Botany 149: 646-657. https://doi.org/10.1016/j.sajb.2022.06.044.

 

CAPTCHA Image